Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lechner, A.M.; Foody, G.M.; Boyd, D.S. Applications in remote sensing to forest ecology and management. One Earth 2020, 2, 405–412. [Google Scholar] [CrossRef]
- Bruzzone, L.; Chi, M.; Marconcini, M. A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3363–3373. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Mou, L.; Zhu, X.X.; Bovolo, F.; Bruzzone, L. Semisupervised change detection using graph convolutional network. IEEE Geosci. Remote Sens. Lett. 2021, 18, 607–611. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. Toward intelligent training of supervised image classifications: Directing training data acquisition for SVM classification. Remote Sens. Environ. 2004, 93, 107–117. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Du, B.; Zhang, L.; Shi, Q. Iterative reweighting heterogeneous transfer learning framework for supervised remote sensing image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 2022–2035. [Google Scholar] [CrossRef]
- He, X.; Chen, Y. Transferring CNN ensemble for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2000, 18, 876–880. [Google Scholar] [CrossRef]
- Zhang, J.; He, Y.; Yuan, L.; Liu, P.; Zhou, X.; Huang, Y. Machine learning-based spectral library for crop classification and status monitoring. Agronomy 2019, 9, 496. [Google Scholar] [CrossRef] [Green Version]
- Saralioglu, E.; Gungor, O. Crowdsourcing-based application to solve the problem of insufficient training data in deep learning-based classification of satellite images. Geocarto Int. 2022, 37, 5433–5452. [Google Scholar] [CrossRef]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. Mapping per-pixel predicted accuracy of classified remote sensing images. Remote Sens. Environ. 2017, 191, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Mountrakis, G.; Xi, B. Assessing reference dataset representativeness through confidence metrics based on information density. ISPRS J. Photogramm. Remote Sens. 2013, 78, 129–147. [Google Scholar] [CrossRef]
- Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. [Google Scholar] [CrossRef]
- Strahler, A.H.; Boschetti, L.; Foody, G.M.; Friedl, M.A.; Hansen, M.C.; Herold, M.; Mayaux, P.; Morisette, J.T.; Stehman, S.V.; Woodcock, C.E. Global Land Cover Validation: Recommendations for Evaluation and Accuracy Assessment of Global Land Cover Maps; European Communities: Luxembourg, 2006; Volume 51, pp. 1–60. Available online: https://op.europa.eu/en/publication-detail/-/publication/52730469-6bc9-47a9-b486-5e2662629976 (accessed on 22 October 2022).
- Stehman, S.V. Sampling designs for accuracy assessment of land cover. Int. J. Remote Sens. 2009, 30, 5243–5272. [Google Scholar] [CrossRef]
- Liu, C.; Frazier, P.; Kumar, L. Comparative assessment of the measures of thematic classification accuracy. Remote Sens. Environ. 2007, 107, 606–616. [Google Scholar] [CrossRef]
- Congalton, R.G. Using spatial autocorrelation analysis to explore the errors in maps generated from remotely sensed data. Photogramm. Eng. Remote Sens. 1988, 54, 587–592. [Google Scholar]
- Edwards, G.; Lowell, K.E. Modeling uncertainty in photointerpreted boundaries. Photogramm. Eng. Remote Sens. 1996, 62, 377–390. [Google Scholar]
- Steele, B.M.; Winne, J.C.; Redmond, R.L. Estimation and mapping of misclassification probabilities for thematic land cover maps. Remote Sens. Environ. 1998, 66, 192–202. [Google Scholar] [CrossRef]
- Fuller, R.M.; Groom, G.B.; Jones, A.R. The land-cover map of Great Britain: An automated classification of Landsat thematic mapper data. Photogramm. Eng. Remote Sens. 1994, 60, 553–562. [Google Scholar]
- Meyer, H.; Pebesma, E. Machine learning-based global maps of ecological variables and the challenge of assessing them. Nat. Commun. 2022, 13, 2208. [Google Scholar] [CrossRef]
- Foody, G.M. Local characterization of thematic classification accuracy through spatially constrained confusion matrices. Int. J. Remote Sens. 2005, 26, 1217–1228. [Google Scholar] [CrossRef]
- Mitchell, P.J.; Downie, A.L.; Diesing, M. How good is my map? A tool for semi-automated thematic mapping and spatially explicit confidence assessment. Environ. Model. Softw. 2018, 108, 111–122. [Google Scholar] [CrossRef]
- Bogaert, P.; Waldner, F.; Defourny, P. An information-based criterion to measure pixel-level thematic uncertainty in land cover classifications. Stoch. Environ. Res. Risk Assess. 2017, 31, 2297–2312. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Campbell, N.A.; Trodd, N.M.; Wood, T.F. Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogramm. Eng. Remote Sens. 1992, 58, 1335–1341. [Google Scholar]
- Comber, A.; Fisher, P.; Brunsdon, C.; Khmag, A. Spatial analysis of remote sensing image classification accuracy. Remote Sens. Environ. 2012, 127, 237–246. [Google Scholar] [CrossRef] [Green Version]
- Comber, A.; Brunsdon, C.; Charlton, M.; Harris, P. Geographically weighted correspondence matrices for local error reporting and change analyses: Mapping the spatial distribution of errors and change. Remote Sens. Lett. 2017, 8, 234–243. [Google Scholar] [CrossRef]
- Comber, A.J. Geographically weighted methods for estimating local surfaces of overall, user and producer accuracies. Remote Sens. Lett. 2013, 4, 373–380. [Google Scholar] [CrossRef] [Green Version]
- Ebrahimy, H.; Mirbagheri, B.; Matkan, A.A.; Azadbakht, M. Per-pixel land cover accuracy prediction: A random forest-based method with limited reference sample data. ISPRS J. Photogramm. Remote Sens. 2021, 172, 17–27. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Naesset, E.; Gobakken, T. Accuracy and precision for remote sensing applications of nonlinear model-based inference. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 27–34. [Google Scholar] [CrossRef]
- Foody, G.M. Latent class modeling for site-and non-site-specific classification accuracy assessment without ground data. IEEE Trans. Geosci. Remote Sens. 2012, 50, 2827–2838. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. A relative evaluation of multiclass image classification by support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1335–1343. [Google Scholar] [CrossRef] [Green Version]
- Lillesand, T.; Kiefer, R.W.; Chipman, J. Remote Sensing and Image Interpretation, 7th ed.; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Collins, J.; Huynh, M. Estimation of diagnostic test accuracy without full verification: A review of latent class methods. Stat. Med. 2014, 33, 4141–4169. [Google Scholar] [CrossRef] [Green Version]
- Garrett, E.S.; Eaton, W.W.; Zeger, S. Methods for evaluating the performance of diagnostic tests in the absence of a gold standard: A latent class model approach. Stat. Med. 2002, 21, 1289–1307. [Google Scholar] [CrossRef]
- McCutcheon, A.L. Latent Class Analysis; Sage: Newbury Park, CA, USA, 1987. [Google Scholar]
- Yin, Z.G.; Zhang, J.B.; Kan, S.L.; Wang, X.G. Diagnostic accuracy of imaging modalities for suspected scaphoid fractures: Meta-analysis combined with latent class analysis. J. Bone Jt. Surgery Br. Vol. 2012, 94, 1077–1085. [Google Scholar] [CrossRef]
- Vermunt, J.K.; Magidson, J. Latent class analysis. In The SAGE Encyclopedia of Social Sciences Research Methods; Lewis-Beck, M.S., Bryman, A., Liao, T.F., Eds.; Sage: Thousand Oaks, CA, USA, 2004; pp. 549–553. [Google Scholar]
- van Kollenburg, G.H.; Mulder, J.; Vermunt, J.K. Assessing model fit in latent class analysis when asymptotics do not hold. Methodol. Eur. J. Res. Methods Behav. Soc. Sci. 2015, 11, 65–79. [Google Scholar] [CrossRef] [Green Version]
- Rutjes, A.W.S.; Reitsma, J.B.; Coomarasamy, A.; Khan, K.S.; Bossuyt, P.M.M. Evaluation of Diagnostic Tests when There Is no Gold Standard. A Review of Methods. Health Technol. Assess. 2007, 11. [Google Scholar] [CrossRef]
- Walter, S.D. Estimation of diagnostic test accuracy: A “Rule of Three” for data with repeated observations but without a gold standard. Stat. Med. 2021, 40, 4815–4829. [Google Scholar] [CrossRef]
- Yang, I.; Becker, M.P. Latent variable modeling of diagnostic accuracy. Biometrics 1997, 53, 948–958. [Google Scholar] [CrossRef]
- Magidson, J.; Vermunt, J.K. Latent class models. In The SAGE Handbook of Quantitative Methodology for the Social Sciences; Kaplan, D., Ed.; Sage: Thousand Oaks, CA, USA, 2004; pp. 175–198. [Google Scholar]
- Albert, P.S.; Dodd, L.E. A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard. Biometrics 2004, 60, 427–435. [Google Scholar] [CrossRef]
- Pepe, M.S.; Janes, H. Insights into latent class analysis of diagnostic test performance. Biostatistics 2007, 8, 474–484. [Google Scholar] [CrossRef] [Green Version]
- Visser, M.; Depaoli, S. A guide to detecting and modeling local dependence in latent class analysis models. Struct. Equ. Model. Multidiscip. J. 2022, 1–12. [Google Scholar] [CrossRef]
Class | Latent Class | |||||
---|---|---|---|---|---|---|
(a) | S | W | B | C | P | G |
0.2994 | 0.2850 | 0.1750 | 0.1063 | 0.0750 | 0.0594 | |
(b) | S | W | B | C | P | G |
S | 0.9289 | 0.0110 | 0 | 0 | 0 | 0 |
W | 0.0189 | 0.9890 | 0.1607 | 0.0294 | 0 | 0 |
B | 0 | 0 | 0.8393 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0.8824 | 0 | 0.0526 |
P | 0.0522 | 0 | 0 | 0.0882 | 1.0000 | 0.1579 |
G | 0 | 0 | 0 | 0 | 0 | 0.7895 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(c) | S | W | B | C | P | G |
S | 0.9269 | 0.0987 | 0.0391 | 0 | 0 | 0 |
W | 0.0522 | 0.8773 | 0 | 0 | 0 | 0 |
B | 0.0104 | 0.0131 | 0.9430 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 1.0000 | 0 | 0 |
P | 0.0104 | 0 | 0 | 0 | 1.0000 | 0 |
G | 0 | 0.0110 | 0.0179 | 0 | 0 | 1.0000 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(d) | S | W | B | C | P | G |
S | 0.9707 | 0 | 0 | 0 | 0 | 0 |
W | 0 | 0.9759 | 0.0358 | 0.0588 | 0 | 0 |
B | 0.0189 | 0.0241 | 0.9464 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 0.9412 | 0 | 0 |
P | 0.0104 | 0 | 0 | 0 | 1.0000 | 0.0526 |
G | 0 | 0 | 0.0179 | 0 | 0 | 0.9474 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(e) | S | W | B | C | P | G |
S | 0.9478 | 0 | 0.0213 | 0 | 0 | 0 |
W | 0.0522 | 1.0000 | 0.0144 | 0 | 0 | 0 |
B | 0 | 0 | 0.9643 | 0 | 0 | 0 |
C | 0 | 0 | 0 | 1.0000 | 0 | 0 |
P | 0 | 0 | 0 | 0 | 1.0000 | 0.0526 |
G | 0 | 0 | 0 | 0 | 0 | 0.9474 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Class | Actual Class | |||||
---|---|---|---|---|---|---|
(a) | S | W | B | C | P | G |
0.3031 | 0.3000 | 0.1594 | 0.1031 | 0.0813 | 0.0531 | |
(b) | S | W | B | C | P | G |
S | 0.8969 | 0.0313 | 0 | 0 | 0 | 0 |
W | 0.0309 | 0.9375 | 0.1176 | 0.0303 | 0.0769 | 0 |
B | 0 | 0.0208 | 0.8824 | 0 | 0 | 0 |
C | 0 | 0.0104 | 0 | 0.8788 | 0 | 0.0588 |
P | 0.0722 | 0 | 0 | 0.0909 | 0.8846 | 0.1176 |
G | 0 | 0 | 0 | 0 | 0.0385 | 0.8235 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(c) | S | W | B | C | P | G |
S | 0.9175 | 0.0833 | 0.0588 | 0 | 0 | 0 |
W | 0.0412 | 0.8229 | 0 | 0 | 0.0769 | 0 |
B | 0.0103 | 0.0625 | 0.9412 | 0 | 0 | 0 |
C | 0 | 0.0104 | 0 | 1.0000 | 0 | 0 |
P | 0.0206 | 0 | 0 | 0 | 0.8846 | 0 |
G | 0.0103 | 0.0208 | 0 | 0 | 0.0385 | 1.0000 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(d) | S | W | B | C | P | G |
S | 0.9278 | 0.0313 | 0 | 0 | 0 | 0 |
W | 0.0309 | 0.8750 | 0.0392 | 0.0606 | 0.0769 | 0 |
B | 0.0103 | 0.0729 | 0.9608 | 0 | 0 | 0 |
C | 0 | 0.0104 | 0 | 0.9394 | 0 | 0 |
P | 0.0309 | 0 | 0 | 0 | 0.8846 | 0 |
G | 0 | 0.0104 | 0 | 0 | 0.0385 | 1.0000 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
(e) | S | W | B | C | P | G |
S | 0.9175 | 0.0208 | 0.0196 | 0 | 0 | 0 |
W | 0.0619 | 0.9167 | 0.0196 | 0 | 0.0769 | 0 |
B | 0 | 0.0521 | 0.9608 | 0 | 0 | 0 |
C | 0 | 0.0104 | 0 | 1.0000 | 0 | 0 |
P | 0.0103 | 0 | 0 | 0 | 0.9231 | 0 |
G | 0.0103 | 0 | 0 | 0 | 0 | 1.0000 |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
Class | Class | |||||
---|---|---|---|---|---|---|
(a) | S | W | B | C | P | G |
−0.0037 | −0.0150 | 0.0156 | 0.0032 | −0.0063 | 0.0063 | |
(b) | S | W | B | C | P | G |
S | 0.0320 | −0.0203 | 0 | 0 | 0 | 0 |
W | −0.0120 | 0.0515 | 0.0431 | −0.0009 | −0.0769 | 0 |
B | 0 | −0.0208 | −0.0431 | 0 | 0 | 0 |
C | 0 | −0.0104 | 0 | 0.0036 | 0 | −0.0062 |
P | −0.0200 | 0 | 0 | −0.0027 | 0.1154 | 0.0403 |
G | 0 | 0 | 0 | 0 | −0.0385 | −0.0340 |
(c) | S | W | B | C | P | G |
S | 0.0094 | 0.0154 | −0.0197 | 0 | 0 | 0 |
W | 0.0110 | 0.0544 | 0 | 0 | −0.0769 | 0 |
B | 0.0001 | −0.0494 | 0.0018 | 0 | 0 | 0 |
C | 0 | −0.0104 | 0 | 0 | 0 | 0 |
P | −0.0102 | 0 | 0 | 0 | 0.1154 | 0 |
G | −0.0103 | −0.0098 | 0.0179 | 0 | −0.0385 | 0 |
(d) | S | W | B | C | P | G |
S | 0.0429 | −0.0313 | 0 | 0 | 0 | 0 |
W | −0.0309 | 0.1009 | −0.0034 | −0.0018 | −0.0769 | 0 |
B | 0.0086 | −0.0488 | −0.0144 | 0 | 0 | 0 |
C | 0 | −0.0104 | 0 | 0.0018 | 0 | 0 |
P | −0.0205 | 0 | 0 | 0 | 0.1154 | 0.0526 |
G | 0 | −0.0104 | 0.0179 | 0 | −0.0385 | −0.0526 |
(e) | S | W | B | C | P | G |
S | 0.0303 | −0.0208 | 0.0017 | 0 | 0 | 0 |
W | −0.0097 | 0.0833 | −0.0052 | 0 | −0.0769 | 0 |
B | 0 | −0.0521 | 0.0035 | 0 | 0 | 0 |
C | 0 | −0.0104 | 0 | 0 | 0 | 0 |
P | −0.0103 | 0 | 0 | 0 | 0.0769 | 0.0526 |
G | −0.0103 | 0 | 0 | 0 | 0 | −0.0526 |
Class | Actual Class | ||||||
---|---|---|---|---|---|---|---|
(a) | S | W | B | C | P | G | Σ |
S | 89.00 | 1.00 | 0 | 0 | 0 | 0 | 90.00 |
W | 1.81 | 90.20 | 9.00 | 1.00 | 0 | 0 | 102.01 |
B | 0 | 0 | 47.00 | 0 | 0 | 0 | 47.00 |
C | 0 | 0 | 0 | 30.02 | 0 | 1.00 | 31.02 |
P | 5.00 | 0 | 0 | 3.00 | 24.00 | 3.00 | 35.00 |
G | 0 | 0 | 0 | 0 | 0 | 15.01 | 15.01 |
Σ | 95.81 | 91.20 | 56.00 | 34.02 | 24.00 | 19.01 | 320.03 |
(b) | S | W | B | C | P | G | Σ |
S | 88.80 | 9.00 | 2.19 | 0 | 0 | 0 | 100.00 |
W | 5.00 | 80.01 | 0 | 0 | 0 | 0 | 85.01 |
B | 1.00 | 1.19 | 52.81 | 0 | 0 | 0 | 55.00 |
C | 0 | 0 | 0 | 34.02 | 0 | 0 | 34.02 |
P | 1.00 | 0 | 0 | 0 | 24.00 | 0 | 25.00 |
G | 0 | 1.00 | 1.00 | 0 | 0 | 19.01 | 21.01 |
Σ | 95.81 | 91.20 | 56.00 | 34.02 | 24.00 | 19.01 | 320.03 |
(c) | S | W | B | C | P | G | Σ |
S | 93.00 | 0 | 0 | 0 | 0 | 0 | 93.00 |
W | 0 | 89.00 | 2.00 | 2.00 | 0 | 0 | 93.01 |
B | 1.81 | 2.20 | 53.00 | 0 | 0 | 0 | 57.01 |
C | 0 | 0 | 0 | 32.02 | 0 | 0 | 32.02 |
P | 1.00 | 0 | 0 | 0 | 24.00 | 1.00 | 26.00 |
G | 0 | 0 | 1.00 | 0 | 0 | 18.01 | 19.01 |
Σ | 95.81 | 91.20 | 56.00 | 34.02 | 24.00 | 19.01 | 320.03 |
(d) | S | W | B | C | P | G | Σ |
S | 0.9278 | 0.0313 | 0 | 0 | 0 | 0 | |
W | 0.0309 | 0.8750 | 0.0392 | 0.0606 | 0.0769 | 0 | |
B | 0.0103 | 0.0729 | 0.9608 | 0 | 0 | 0 | |
C | 0 | 0.0104 | 0 | 0.9394 | 0 | 0 | |
P | 0.0309 | 0 | 0 | 0 | 0.8846 | 0 | |
G | 0 | 0.0104 | 0 | 0 | 0.0385 | 1.0000 | |
Σ | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | |
(e) | S | W | B | C | P | G | Σ |
S | 90.81 | 0 | 1.19 | 0 | 0 | 0 | 92.00 |
W | 5.00 | 91.20 | 0.81 | 0 | 0 | 0 | 97.01 |
B | 0 | 0 | 54.00 | 0 | 0 | 0 | 54.00 |
C | 0 | 0 | 0 | 34.02 | 0 | 0 | 34.02 |
P | 0 | 0 | 0 | 0 | 24.00 | 1.00 | 25.00 |
G | 0 | 0 | 0 | 0 | 0 | 18.01 | 18.01 |
Σ | 95.81 | 91.20 | 56.00 | 34.02 | 24.00 | 19.01 | 320.03 |
(a) | S | W | B | C | P | G | Σ |
S | 87 | 3 | 0 | 0 | 0 | 0 | 90 |
W | 3 | 90 | 6 | 1 | 2 | 0 | 102 |
B | 0 | 2 | 45 | 0 | 0 | 0 | 47 |
C | 0 | 1 | 0 | 29 | 0 | 1 | 31 |
P | 7 | 0 | 0 | 3 | 23 | 2 | 35 |
G | 0 | 0 | 0 | 0 | 1 | 14 | 15 |
Σ | 97 | 96 | 51 | 33 | 26 | 17 | 320 |
(b) | S | W | B | C | P | G | Σ |
S | 89 | 8 | 3 | 0 | 0 | 0 | 100 |
W | 4 | 79 | 0 | 0 | 2 | 0 | 85 |
B | 1 | 6 | 48 | 0 | 0 | 0 | 55 |
C | 0 | 1 | 0 | 33 | 0 | 0 | 34 |
P | 2 | 0 | 0 | 0 | 23 | 0 | 25 |
G | 1 | 2 | 0 | 0 | 1 | 17 | 21 |
Σ | 97 | 96 | 51 | 33 | 26 | 17 | 320 |
(c) | S | W | B | C | P | G | Σ |
S | 90 | 3 | 0 | 0 | 0 | 0 | 93 |
W | 3 | 84 | 2 | 2 | 2 | 0 | 93 |
B | 1 | 7 | 49 | 0 | 0 | 0 | 57 |
C | 0 | 1 | 0 | 31 | 0 | 0 | 32 |
P | 3 | 0 | 0 | 0 | 23 | 0 | 26 |
G | 0 | 1 | 0 | 0 | 1 | 17 | 19 |
Σ | 97 | 96 | 51 | 33 | 26 | 17 | 320 |
(d) | S | W | B | C | P | G | Σ |
S | 89 | 2 | 1 | 0 | 0 | 0 | 92 |
W | 6 | 88 | 1 | 0 | 2 | 0 | 97 |
B | 0 | 5 | 49 | 0 | 0 | 0 | 54 |
C | 0 | 1 | 0 | 33 | 0 | 0 | 34 |
P | 1 | 0 | 0 | 0 | 24 | 0 | 25 |
G | 1 | 0 | 0 | 0 | 0 | 17 | 18 |
Σ | 97 | 96 | 51 | 33 | 26 | 17 | 320 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foody, G.M. Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data. Remote Sens. 2022, 14, 5380. https://doi.org/10.3390/rs14215380
Foody GM. Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data. Remote Sensing. 2022; 14(21):5380. https://doi.org/10.3390/rs14215380
Chicago/Turabian StyleFoody, Giles M. 2022. "Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data" Remote Sensing 14, no. 21: 5380. https://doi.org/10.3390/rs14215380
APA StyleFoody, G. M. (2022). Global and Local Assessment of Image Classification Quality on an Overall and Per-Class Basis without Ground Reference Data. Remote Sensing, 14(21), 5380. https://doi.org/10.3390/rs14215380