Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds
Abstract
:1. Introduction
2. S-NPP and NOAA-20 VIIRS SDRs
2.1. S-NPP VIIRS RSB SDRs
2.2. NOAA-20 VIIRS RSB SDRs
3. The Monthly and Daily DCC Methods for VIIRS
- Latitude: ±25°;
- TB11 (M15, center wavelength 10.7 µm) ≤205 K;
- σ (TB11) of the subject pixel and its eight adjacent pixels ≤1 K;
- σ (ref) of the subject pixel and its eight adjacent pixels ≤3%;
- Solar zenith angle (SZA) ≤40°;
- View zenith angle (VZA) ≤35°.
4. Results and Discussions
4.1. S-NPP VIIRS RSB SDRs
4.1.1. Long-Term Calibration Stabilities of S-NPP VIIRS RSB SDRs
4.1.2. Detector Level Calibration Stability of S-NPP VIIRS SDRs
4.1.3. NASA/NOAA S-NPP VIIRS RSB Calibration Biases
4.2. NOAA-20 VIIRS RSB SDRs
4.2.1. Long-Term Calibration Stabilities of NOAA-20 VIIRS SDRs
4.2.2. NASA/NOAA NOAA-20 VIIRS Calibration Biases
4.3. Inter-Satellite Biases between NOAA-20 and S-NPP VIIRS RSBs
4.4. Inter-Channel Calibration Consistency of NOAA-20 and S-NPP VIIRS RSBs
4.5. Typical VIIRS RSB Radiances over DCCs
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- Cao, C.; Xiong, J.; Blonski, S.; Liu, Q.; Uprety, S.; Shao, X.; Bai, Y.; Weng, F. Suomi NPP VIIRS sensor data record verification, validation, and long-term performance monitoring. J. Geophys. Res. Atmos. 2013, 118, 11664–11678. [Google Scholar] [CrossRef]
- Cao, C.; De Luccia, F.J.; Xiong, X.; Wolfe, R.; Weng, F. Early on-orbit performance of the Visible Infrared Imaging Radiometer Suite onboard the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. IEEE Trans. Geosci. Remote Sens. 2014, 52, 1142–1156. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.; Cao, C.; Blonski, S.; Wang, W.; Uprety, S.; Shao, X. NOAA-20 VIIRS Reflective Solar Band Postlaunch Calibration Updates Two Years In-Orbit. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7633–7642. [Google Scholar] [CrossRef]
- Wang, W.; Cao, C. Evaluation of NOAA-20 VIIRS Reflective Solar Bands Early On-Orbit Performance Using Daily Deep Convective Clouds Recent Improvements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3975–3985. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, B.; Shao, X.; Wang, W.; Uprety, S.; Choi, T.; Blonski, S.; Gu, Y.; Bai, Y.; Lin, L.; et al. Mission-Long Recalibrated Science Quality Suomi NPP VIIRS Radiometric Dataset Using Advanced Algorithms for Time Series Studies. Remote Sens. 2021, 13, 1075. [Google Scholar] [CrossRef]
- Doelling, D.; Morstad, D.; Bhatt, R.; Scarino, B. Algorithm Theoretical Basis Document (ATBD) for Deep Convective Cloud (DCC) Technique of Calibrating GEO Sensors with Aqua-MODIS for GSICS; World Meteorological Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Doelling, D.R.; Morstad, D.; Scarino, B.R.; Bhatt, R.; Gopalan, A. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1147–1159. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, D.; Wu, A.; Xiong, X.; Scarino, B.; Haney, C.; Gopalan, A. Initial stability assessment of S-NPP VIIRS reflective solar band calibration using invariant desert and deep convective cloud targets. Remote Sens. 2014, 6, 2809–2826. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cao, C. DCC radiometric sensitivity to spatial resolution, cluster size, and LWIR calibration bias sased on VIIRS observations. J. Atmos. Ocean. Technol. 2015, 32, 48–60. [Google Scholar] [CrossRef]
- Bhatt, R.; Doelling, R.D.; Scarino, B.; Haney, C.; Gopalan, A. Development of Seasonal BRDF Models to Extend the Use of Deep Convective Clouds as Invariant Targets for Satellite SWIR-Band Calibration. Remote Sens. 2017, 9, 1061. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cao, C. Monitoring the NOAA operational VIIRS RSB and DNB calibration stability using monthly and semi-monthly deep convective clouds time series. Remote Sens. 2016, 8, 32. [Google Scholar] [CrossRef] [Green Version]
- Mu, Q.; Xiong, X.; Chang, T.; Wu, A. Exploring the stability and residual response versus scan angle effects in SNPP VIIRS sensor data record reflectance products using deep convective clouds. J. Appl. Remote Sens. 2018, 12, 034006. [Google Scholar] [CrossRef]
- Mu, Q.; Wu, A.; Xiong, X.; Angal, A. Assessment of SNPP VIIRS RSB detector-to-detector differences using deep convective clouds and deserts. J. Appl. Remote Sens. 2020, 14, 018503. [Google Scholar] [CrossRef]
- Hu, Y.; Wielicki, B.A.; Ping, Y.; Stackhouse, P.W.; Lin, B.; Young, D.F. Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2594–2599. [Google Scholar]
- Sun, J.; Wang, M. Visible Infrared Imaging Radiometer Suite solar diffuser calibration and its challenges using a solar diffuser stability monitor. Appl. Opt. 2014, 53, 8571–8584. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M. On-orbit calibration of Visible Infrared Imaging Radiometer Suite reflective solar bands and its challenges using a solar diffuser. Appl. Opt. 2015, 54, 7210–7223. [Google Scholar] [CrossRef]
- Eplee, R.E.; Turpie, K.R.; Meister, G.; Patt, F.S.; Franz, B.A.; Bailey, S.W. On-orbit calibration of the Suomi National Polar-Orbiting Partnership Visible Infrared Imaging Radiometer Suite for ocean color applications. Appl. Opt. 2015, 54, 1984–2006. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M. Radiometric calibration of the Visible Infrared Imaging Radiometer Suite reflective solar bands with robust characterizations and hybrid calibration coefficients. Appl. Opt. 2015, 54, 9331–9342. [Google Scholar] [CrossRef]
- Sun, J.; Wang, M. VIIRS Reflective Solar Bands Calibration Progress and Its Impact on Ocean Color Products. Remote Sens. 2016, 8, 194. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Wang, M. NOAA-20 VIIRS on-orbit calibration and characterization using the Moon. Proc. SPIE 2018, 10764, 197640. [Google Scholar]
- Sun, J.; Chu, M.; Wang, M. On-orbit characterization of the VIIRS solar diffuser and attenuation screens for NOAA-20 using yaw measurements. Appl. Opt. 2018, 57, 6605–6619. [Google Scholar] [CrossRef]
- Eplee, R.E.; Meister, G.; Patt, F.S.; Turpie, K.R.; Bailey, S.W.; Franz, B.A. The NASA OBPG 2020 on-orbit calibration of SNPP VIIRS for ocean color applications. Earth Obs. Syst. XXIV 2019, 11127, 254–272. [Google Scholar]
- Sun, J.; Xiong, X.; Lei, N.; Li, S.; Twedt, K.; Angal, A. Ten Years of SNPP VIIRS Reflective Solar Bands On-Orbit Calibration and Performance. Remote Sens. 2021, 13, 2944. [Google Scholar] [CrossRef]
- Zou, C.-Z.; Zhou, L.; Lin, L.; Sun, N.; Chen, Y.; Flynn, L.E.; Zhang, B.; Cao, C.; Iturbide-Sanchez, F.; Beck, T.; et al. The Reprocessed Suomi NPP Satellite Observations. Remote Sens. 2020, 12, 2891. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X.; Wang, Z.; Li, S.C.; Twedt, K.A. SNPP VIIRS RSB on-orbit radiometric calibration algorithms Version 2.0 and the performances, part 2: The performances. J. Appl. Remote Sens. 2020, 14, 047502. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X.; Wang, Z.; Li, S.C.; Twedt, K.A. SNPP VIIRS RSB on-orbit radiometric calibration algorithms Version 2.0 and the performances, part 1: The algorithms. J. Appl. Remote Sens. 2020, 14, 047501. [Google Scholar] [CrossRef]
- Cao, C.; Wang, W. Suomi NPP/J1 VIIRS SDR Performance Highlights and Cal/Val Update. In Proceedings of the 96th American Meteorological Society Annual Meeting (Oral Presentation on Behalf of Dr. Changyong Cao), New Orleans, LA, USA, 14 January 2016. [Google Scholar]
- Wang, W.; Cao, C. NOAA-20 VIIRS Sensor Data Records Geometric and Radiometric Calibration Performance One Year In-Orbit. In Proceedings of the 2019 International Geoscience and Remote Sensing Symposium (IGARSS), Yokohama, Japan, 28 July–3 August 2019. [Google Scholar]
- NOAA STAR. Integrated Calibration Validation System (ICVS). Available online: https://www.star.nesdis.noaa.gov/icvs (accessed on 1 May 2022).
- Thuillier, G.; Hersé, M.; Labs, D.; Foujols, T.; Peetermans, W.; Gillotay, D.; Simon, P.C.; Mandel, H. The Solar Spectral Irradiance from 200 to 2400 nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions. Sol. Phys. 2003, 214, 1–22. [Google Scholar] [CrossRef]
- Blonski, S.; Cao, C. Suomi NPP VIIRS Reflective Solar Bands Operational Calibration Reprocessing. Remote Sens. 2015, 7, 15823. [Google Scholar] [CrossRef] [Green Version]
- Choi, T.; Shao, X.; Cao, C. On-orbit radiometric calibration of Suomi NPP VIIRS reflective solar bands using the Moon and solar diffuser. Appl. Opt. 2018, 57, 9533–9542. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C. Suomi NPP VIIRS reflective solar band on-orbit radiometric stability and accuracy assessment using desert and Antarctica Dome C sites. Remote Sens. Environ. 2015, 166, 106–115. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Blonski, S. Retrospective analysis of Suomi NPP VIIRS radiometric bias for reflective solar bands due to operational calibration changes. Int. J. Remote Sens. 2016, 37, 5472–5489. [Google Scholar] [CrossRef]
- Shao, X.; Cao, C.; Liu, T.-C. Spectral Dependent Degradation of the Solar Diffuser on Suomi-NPP VIIRS Due to Surface Roughness-Induced Rayleigh Scattering. Remote Sens. 2016, 8, 254. [Google Scholar] [CrossRef] [Green Version]
- Blonski, S. ADR 9001: Suomi NPP VIIRS Solar Calibration Anomaly on February 24, 2019H-AUTOMATE LUT Update. In Proceedings of the NOAA STAR VIIRS Radiance Team Meeting, College Park, MD, USA, 4 April 2019. [Google Scholar]
- Zhang, B.; Cao, C.; Blonski, S.; Wang, W.; Shao, X. JPSS VIIRS Solar Vector Anomaly Root Cause Analysis and Lessons Learned. In Proceedings of the JPSS/GOES-R Proving Ground/Risk Reduction Summit, College Park, MD, USA, 24–28 February 2020. [Google Scholar]
- Sun, J.; Xiong, X. SNPP VIIRS Reflective Solar Bands On-Orbit Calibration Using the Moon. IEEE Trans. Geosci. Remote Sens. 2021, 59, 4499–4512. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Impacts of the Angular Dependence of the Solar Diffuser BRDF Degradation Factor on the SNPP VIIRS Reflective Solar Band On-Orbit Radiometric Calibration. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1537–1543. [Google Scholar] [CrossRef]
- Lei, N.; Xiong, X. Suomi NPP VIIRS Solar Diffuser BRDF Degradation Factor at Short-Wave Infrared Band Wavelengths. IEEE Trans. Geosci. Remote Sens. 2016, 54, 6212–6216. [Google Scholar] [CrossRef]
- Lei, N.; Guenther, B.; Wang, Z.; Xiong, X. Modeling SNPP VIIRS reflective solar bands optical throughput degradation and its impacts on the relative spectral response. Proc. SPIE 2013, 8866, 461–470. [Google Scholar]
- Lei, N.; Xiong, X.; Mu, Q.; Li, S.; Chang, T. Positional Dependence of SNPP VIIRS Solar Diffuser BRDF Change Factor: An Empirical Approach. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8056–8061. [Google Scholar] [CrossRef]
- Li, S.; Xiong, X.; Lei, N. S-NPP and N20 VIIRS RSB bands detector-to-detector calibration differences assessment using a homogeneous ground target. Proc. SPIE 2020, 11501, 357–367. [Google Scholar]
- Sun, J.; Xiong, X. NOAA-20 VIIRS Reflective Solar bands on-Orbit Calibration Using a Hybrid Approach. In Proceedings of the 2020 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6397–6400. [Google Scholar]
- Sun, J.; Xiong, X. NOAA-20 VIIRS reflective solar bands on-orbit calibration. In Sensors, Systems, and Next-Generation Satellites XXIII; SPIE: Bellingham, WA, USA, 2019; Volume 11151. [Google Scholar]
- Twedt, K.; Lei, N.; Xiong, X.; Angal, A.; Li, S.; Chang, T.; Sun, J. On-Orbit Calibration and Performance of NOAA-20 VIIRS Reflective Solar Bands. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–13. [Google Scholar] [CrossRef]
- Blonski, S.; Wang, W.; Choi, T.; Shao, X.; Uprety, S.; Ahmad, K.; Gu, Y.; Zhang, B.; Bai, Y.; Cao, C. Proposed Update of the NOAA-20 VIIRS SDR Radiometric Calibration for VisNIR Bands; JPSS VIIRS SDR Team Telecon: College Park, MD, USA, 2021.
- Lei, N.; Kevin, T.; Amit, A.; Sherry, L.; Tiejun, C.; Xu, G.; Xiaoxiong, X. N20 VIIRS RSB calibration algorithms and results: Collection 2.0. Proc. SPIE 2020, 11501, 233–240. [Google Scholar]
- Lei, N.; Twedt, K.; Xiong, X. NOAA-20 VIIRS solar diffuser BRDF on-orbit change factor for wavelengths longer than 1 micron. Proc. SPIE 2019, 11151, 331–336. [Google Scholar]
- Doelling, D.R.; Scarino, B.R.; Morstad, D.; Gopalan, A.; Bhatt, R.; Lukashin, C.; Minnis, P. The Intercalibration of Geostationary Visible Imagers Using Operational Hyperspectral SCIAMACHY Radiances. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1245–1254. [Google Scholar] [CrossRef]
- Gong, X.; Li, Z.; Li, J.; Moeller, C.C.; Wang, W. Monitoring the VIIRS Sensor Data Records Reflective Solar Band Calibrations Using DCC With Collocated CrIS Measurements. J. Geophys Res. Atmos. 2019, 124, 8688–8706. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cao, C.; Blonski, S.; Gu, Y.; Zhang, B.; Uprety, S.; Choi, T.; Shao, X. NOAA-20/S-NPP VIIRS Sensor Data Record On-Orbit Performance Updates and Recent Improvements. In Proceedings of the 2020 International Geoscience and Remote Sensing Symposium, Online, 26 September–2 October 2020. [Google Scholar]
- Scarino, B.R.; Doelling, D.R.; Minnis, P.; Gopalan, A.; Chee, T.; Bhatt, R.; Lukashin, C.; Haney, C. A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2529–2542. [Google Scholar] [CrossRef]
- Bovensmann, H.; Burrows, J.P.; Buchwitz, M.; Frerick, J.; Noël, S.; Rozanov, V.V.; Chance, K.V.; Goede, A.P.H. SCIAMACHY: Mission Objectives and Measurement Modes. J. Atmos. Sci. 1999, 56, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Cao, C.; Blonski, S.; Gu, Y.; Zhang, B.; Uprety, S. An Improved Method for VIIRS Radiance Limit Verification and Saturation Rollover Flagging. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–11. [Google Scholar] [CrossRef]
- Xiong, X.; Angal, A.; Chang, T.; Chiang, K.; Lei, N.; Li, Y.; Sun, J.; Twedt, K.; Wu, A. MODIS and VIIRS Calibration and Characterization in Support of Producing Long-Term High-Quality Data Products. Remote Sens. 2020, 12, 3167. [Google Scholar] [CrossRef]
- Doelling, D.; Cao, C.; Xiong, J. GSICS recommends NOAA-20 VIIRS as reflective solar band (RSB) calibration reference. GSICS Q. 2021, 14, 2–4. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Shao, X. Radiometric consistency between GOES-16 ABI and VIIRS on Suomi NPP and NOAA-20. J. Appl. Remote Sens. 2020, 14, 032407. [Google Scholar] [CrossRef]
- Uprety, S.; Cao, C.; Blonski, S.; Shao, X. Evaluating NOAA-20 and S-NPP VIIRS Radiometric Consistency. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Honolulu, HI, USA, 23 October 2018; Volume 107810. [Google Scholar] [CrossRef]
- Moyer, D.; Uprety, S.; Wang, W.; Cao, C.; Guch, I. S-NPP/NOAA-20 VIIRS reflective solar bands on-orbit calibration bias investigation. Proc. SPIE 2021, 11829, 319–331. [Google Scholar]
- Thompson, D.R.; McCubbin, I.; Gao, B.C.; Green, R.O.; Matthews, A.A.; Mei, F.; Meyer, K.G.; Platnick, S.; Schmid, B.; Tomlinson, J.; et al. Measuring cloud thermodynamic phase with shortwave infrared imaging spectroscopy. J. Geophys Res. Atmos. 2016, 121, 9174–9190. [Google Scholar] [CrossRef]
- Fougnie, B.; Bach, R. Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: Operational application to PARASOL. IEEE Trans. Geosci. Remote Sens. 2009, 47, 851–861. [Google Scholar] [CrossRef]
- Choi, T.; Cao, C.; Shao, X.; Wang, W. S-NPP VIIRS Lunar Calibrations over 10 years in Reflective Solar Bands (RSB). Remote Sens. 2022, 14, 3367. [Google Scholar] [CrossRef]
Spatial Resolution at Nadir (m) | Center Wavelength (µm) | Gain | Ltyp | Lmin | Lmax | |||
---|---|---|---|---|---|---|---|---|
S-NPP | NOAA-20 | |||||||
VIS/NIR | M1 | 750 | 0.411 | 0.412 | H | 44.9 | 30 | 135 |
L | 155 | 615 | ||||||
M2 | 750 | 0.444 | 0.445 | H | 40 | 26 | 127 | |
L | 146 | 687 | ||||||
M3 | 750 | 0.486 | 0.489 | H | 32 | 22 | 107 | |
L | 123 | 702 | ||||||
M4 | 750 | 0.551 | 0.557 | H | 21 | 12 | 78 | |
L | 90 | 667 | ||||||
I1 | 375 | 0.639 | 0.644 | S | 22 | 22 | 718 | |
M5 | 750 | 0.672 | 0.667 | H L | 10 68 | 9 | 59 651 | |
M6 | 750 | 0.745 | 0.746 | S | 9.6 | 5.3 | 41 | |
I2 | 375 | 0.862 | 0.867 | S | 25 | 25 | 349 | |
M7 | 750 | 0.862 | 0.868 | H L | 6.4 33.4 | 3.4 | 29 349 | |
SWIR | M8 | 750 | 1.238 | 1.238 | S | 5.4 | 3.5 | 165 |
M9 | 750 | 1.375 | 1.375 | S | 6 | 0.6 | 77.1 | |
I3 | 375 | 1.602 | 1.604 | S | 7.3 | 7.3 | 72.5 | |
M10 | 750 | 1.602 | 1.605 | S | 7.3 | 1.2 | 71.2 | |
M11 | 750 | 2.257 | 2.258 | S | 0.12(NPP) 0.1 (NOAA-20) | 0.12 | 31.8 |
Name | Time Period | Note | |
---|---|---|---|
S-NPP | NOAA-NPP-V2 | 2012–2020 | NOAA Version 2 Reprocessed S-NPP VIIRS SDRs. |
NASA-NPP-C1 | 2012–2021 | NASA Collection 1.0 SIPS S-NPP VIIRS level 1B data. | |
NASA-NPP-C2 | 2012–2021 | NASA Collection 2.0 SIPS S-NPP VIIRS level 1B data. | |
NOAA-20 | NOAA-N20-ConstF | 2018–2021 | NOAA constant F-factor calibrated NOAA-20 VIIRS SDRs. |
NASA-N20-C2 | 2018–2021 | NASA Collection 2.0 SIPS NOAA-20 VIIRS level 1B data. |
Trend ± 95% CI Unit: %/year | NOAA-NPP-OPR 2012–2020/2012–2021 | NOAA-NPP-V2 2012–2020 | NASA-NPP-C1 2012–2020/2012–2021 | NASA-NPP-C2 2012–2020/2012–2021 | |
---|---|---|---|---|---|
VNIR | M1 | −0.07 ± 0.05/−0.04 ± 0.04 | 0.08 ± 0.02 | 0.07 ± 0.02/0.06 ± 0.02 | 0.05 ± 0.03/0.11 ± 0.03 |
M2 | −0.20 ± 0.04/−0.18 ± 0.04 | 0.05 ± 0.02 | 0.01 ± 0.02/−0.01 ± 0.02 | 0.05 ± 0.02/0.06 ± 0.02 | |
M3 | −0.11 ± 0.04/−0.09 ± 0.04 | 0.14 ± 0.02 | 0.17 ± 0.03/0.15 ± 0.02 | 0.16 ± 0.02/0.16 ± 0.02 | |
M4 | −0.14 ± 0.04/−0.11 ± 0.04 | 0.13 ± 0.02 | 0.11 ± 0.03/0.09 ± 0.02 | 0.13 ± 0.03/0.11 ± 0.02 | |
M5 | 0.00 ± 0.03/0.01 ± 0.03 | 0.07 ± 0.02 | 0.07 ± 0.02/0.06 ± 0.02 | 0.08 ± 0.02/0.08 ± 0.02 | |
M7 | 0.00 ± 0.03/0.00 ± 0.03 | 0.05 ± 0.01 | −0.03 ± 0.02/−0.03 ± 0.02 | 0.01 ± 0.02/0.01 ± 0.01 | |
I1 | - | 0.05 ± 0.02 | −0.01 ± 0.03/−0.02 ± 0.03 | 0.06 ± 0.02/0.05 ± 0.02 | |
I2 | - | 0.01 ± 0.02 | −0.07 ± 0.02/−0.06 ± 0.02 | 0.01 ± 0.02/0.01 ± 0.01 | |
SWIR | M8 | 0.12 ± 0.07/0.14 ± 0.06 | −0.05 ± 0.04 | −0.07 ± 0.04/−0.05 ± 0.03 | −0.05 ± 0.04/−0.02 ± 0.03 |
M9 | 0.18 ± 0.14/0.19 ± 0.12 | −0.03 ± 0.06 | 0.01 ± 0.07/0.04 ± 0.06 | −0.02 ± 0.07/0.01 ± 0.06 | |
M10 | 0.12 ± 0.15/0.13 ± 0.12 | −0.09 ± 0.05 | −0.06 ± 0.06/−0.02 ± 0.05 | −0.06 ± 0.06/0.00 ± 0.05 | |
M11 | 0.09 ± 0.13/0.09 ± 0.10 | −0.05 ± 0.05 | −0.04 ± 0.05/−0.02 ± 0.04 | −0.04 ± 0.05/−0.01 ± 0.04 | |
I3 | - | −0.09 ± 0.06 | −0.19 ± 0.07/−0.15 ± 0.04 | −0.05 ± 0.06/−0.02 ± 0.05 |
Trend ± 95%CI Unit: %/year | NOAA-N20-OPR Daily/Monthly | NOAA-N20-ConstF Daily/Monthly | NASA-N20-C2 Daily/Monthly | |
---|---|---|---|---|
VNIR | M1 | −0.29 ± 0.05/−0.16 ± 0.14 | −0.00 ± 0.04/−0.05 ± 0.08 | −0.05 ± 0.05/−0.10 ± 0.08 |
M2 | −0.20 ± 0.05/−0.11 ± 0.10 | −0.03 ± 0.05/−0.08 ± 0.08 | −0.10 ± 0.05/−0.13 ± 0.08 | |
M3 | −0.17 ± 0.05/−0.17 ± 0.11 | −0.01 ± 0.05/−0.02 ± 0.09 | −0.12 ± 0.05/−0.12 ± 0.08 | |
M4 | −0.14 ± 0.05/−0.16 ± 0.11 | −0.03 ± 0.05/−0.05 ± 0.10 | −0.13 ± 0.05/−0.15 ± 0.10 | |
M5 | −0.05 ± 0.04/−0.06 ± 0.09 | −0.04 ± 0.04/−0.07 ± 0.08 | −0.07 ± 0.04/−0.06 ± 0.08 | |
M7 | 0.03 ± 0.03/0.05 ± 0.07 | 0.01 ± 0.03/0.03 ± 0.07 | −0.05 ± 0.03/−0.06 ± 0.06 | |
I1 | −0.08 ± 0.04/−0.11 ± 0.08 | −0.08 ± 0.04/0.10 ± 0.08 | −0.10 ± 0.05/−0.17 ± 0.09 | |
I2 | −0.08 ± 0.03/−0.13 ± 0.09 | −0.01 ± 0.03/0.01 ± 0.06 | −0.02 ± 0.03/−0.04 ± 0.05 | |
SWIR | M8 | −0.03 ± 0.05/−0.04 ± 0.15 | 0.01 ± 0.05/0.00 ± 0.15 | 0.06 ± 0.05/0.04 ± 0.15 |
M9 | 0.18 ± 0.11/0.10 ± 0.24 | 0.05 ± 0.10/0.05 ± 0.23 | 0.09 ± 0.10/0.08 ± 0.23 | |
M10 | 0.31 ± 0.11/0.15 ± 0.23 | 0.12 ± 0.11/0.09 ± 0.24 | 0.16 ± 0.11/0.14 ± 0.24 | |
M11 | 0.18 ± 0.09/0.05 ± 0.20 | 0.04 ± 0.08/0.01 ± 0.24 | 0.14 ± 0.09/0.12 ± 0.20 | |
I3 | 0.36 ± 0.11/0.22 ± 0.23 | 0.14 ± 0.11/0.11 ± 0.24 | 0.16 ± 0.11/0.13 ± 0.25 |
Biases (%) | NOAA-NPP-OPR/NOAA-N20-OPR (5/2018–2021) | NOAA-NPP-V2/NOAA-N20-ConstF (2018–2020) | NASA-NPP-C1/NASA-N20-C2 (2018–2021) | NASA-NPP-C2/NASA-N20-C2 (2018–2021) | |
---|---|---|---|---|---|
VNIR | M1 | 3.6 | 4.3 | 7.0 | 6.7 |
M2 | 1.9 | 3.4 | 5.5 | 5.5 | |
M3 | 2.6 | 3.9 | 5.6 | 5.7 | |
M4 | 2.8 | 4.5 | 5.8 | 5.8 | |
M5 | 4.6 | 2.9 | 5.5 | 5.4 | |
M7 | 3.6 | 1.5 | 4.0 | 4.2 | |
I1 | 3.2 | 4.1 | 5.1 | 5.2 | |
I2 | 4.0 | 1.8 | 4.5 | 4.7 | |
SWIR | M8 | 3.0 | 1.6 | 1.9 | 1.9 |
M9 | 1.7 | 0.5 | 1.0 | 1.0 | |
M10 | 3.6 | 2.2 | 2.9 | 3.0 | |
M11 | 2.6 | 2.1 | 2.0 | 2.0 | |
I3 | 4.9 | 3.5 | 4.5 | 4.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Cao, C.; Shao, X.; Blonski, S.; Choi, T.; Uprety, S.; Zhang, B.; Bai, Y. Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds. Remote Sens. 2022, 14, 3566. https://doi.org/10.3390/rs14153566
Wang W, Cao C, Shao X, Blonski S, Choi T, Uprety S, Zhang B, Bai Y. Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds. Remote Sensing. 2022; 14(15):3566. https://doi.org/10.3390/rs14153566
Chicago/Turabian StyleWang, Wenhui, Changyong Cao, Xi Shao, Slawomir Blonski, Taeyoung Choi, Sirish Uprety, Bin Zhang, and Yan Bai. 2022. "Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds" Remote Sensing 14, no. 15: 3566. https://doi.org/10.3390/rs14153566
APA StyleWang, W., Cao, C., Shao, X., Blonski, S., Choi, T., Uprety, S., Zhang, B., & Bai, Y. (2022). Evaluation of 10-Year NOAA/NASA Suomi NPP and NOAA-20 VIIRS Reflective Solar Band (RSB) Sensor Data Records (SDR) over Deep Convective Clouds. Remote Sensing, 14(15), 3566. https://doi.org/10.3390/rs14153566