An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe
Abstract
:1. Introduction
2. Materials
2.1. Online Data Integration Platform
2.2. GNSS Data
2.3. SAR Data
3. Methods
3.1. Classification Based on the Dominant Motion Trend
3.2. Separation of Different Types/Causes of Ground Motion
4. Results
4.1. Local Scale Results
4.1.1. Salt Exploitations
4.1.2. Critical Infrastructure Stability in the City of Cernavoda (Romania)
4.1.3. Oil Exploitation in Videle Area (Romania)
4.1.4. Land Stability within a River–Delta–Sea System (Danube Delta—Western Black Sea System, Sulina City, E Romania)
4.2. Wide-Area Displacement Maps
4.3. Wide-Area Deep Motion
Dobrogea Region (SE Romania)
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, J.; Meng, X.; Yan, B.; Xu, B.; Fan, Q.; Xie, Y. Global Navigation Satellite System-based positioning technology for structural health monitoring: A review. Struct. Control. Health Monit. 2020, 27, e2467. [Google Scholar] [CrossRef] [Green Version]
- Nevada Geodetical Laboratory. Available online: http://geodesy.unr.edu/about.php (accessed on 15 February 2022).
- Rucci, A.; Ferretti, A.; Monti Guarnieri, A.; Rocca, F. Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements. Remote Sens. Environ. 2012, 120, 156–163. [Google Scholar] [CrossRef]
- European Geological Data Infrastructure. European Space Agency Terrafirma Program. Available online: http://www.europe-geology.eu/terrafirma/ (accessed on 15 February 2022).
- Adam, N.; Parizzi, A.; Eineder, M.; Crosetto, M. Practical persistent scatterer processing 450 validation in the course of the Terrafirma project. J. Appl.Geophys. 2009, 69, 451–5965. [Google Scholar] [CrossRef] [Green Version]
- NASA-ISRO SAR Mission. Available online: https://nisar.jpl.nasa.gov/ (accessed on 15 February 2022).
- Cocco, M.; Atakan, K.; Pedersen, H.; Consortium, E. The European Plate Observing System (EPOS) Services for Solid Earth Science. 2016. Available online: https://gnss-epos.eu/about-us/ (accessed on 15 February 2022).
- European Space Agency. Geohazards TEP. Available online: https://eo4society.esa.int/resources/geohazards-exploitation-platform-g-tep/ (accessed on 15 February 2022).
- European Union. Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/european-ground-motion-service (accessed on 15 February 2022).
- Cusson, D.; Trischuk, K.; Hébert, D.; Hewus, G.; Gara, M.; Ghuman, P. Satellite-Based InSAR Monitoring of Highway Bridges: Validation Case Study on the North Channel Bridge in Ontario, Canada. Transp. Res. Rec. 2018, 2672, 76–86. [Google Scholar] [CrossRef]
- Mațenco, L. Tectonics and Exhumation of Romanian Carpathians: Inferences from Kinematic and Thermochronological Studies. In Landform Dynamics and Evolution in Romania; Radoane, M., Vespremeanu-Stroe, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Van der Hoeven, A.G.A.; Mocanu, V.; Spakman, W.; Nutto, M.; Nuckelt, A.; Matenco, L.; Munteanu, L.; Marcu, C.; Ambrosius, B.A.C. Observation of present-day tectonic motions in the Southeastern Carpathians: Results of the ISES/CRC-461 GPS measurements. Earth Planet. Sci. Lett. 2005, 239, 177–184. [Google Scholar] [CrossRef]
- Cakir, Z.; Ergintav, S.; Akoğlu, A.M.; Çakmak, R.; Tatar, O.; Meghraoui, M. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation. J. Geophys. Res. Solid Earth 2014, 119, 7934–7943. [Google Scholar] [CrossRef] [Green Version]
- Kotzev, V.; Nakov, R.; Burchfiel, B.C.; King, R. NW Bulgaria – The Northern Boundary of the Aegean Extensional Domain. In Vistas for Geodesy in the New Millennium; International Association of Geodesy Symposia; Ádám, J., Schwarz, K.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 501–505. [Google Scholar] [CrossRef]
- Leever, K.A.; Matenco, L.; Bertotti, G.; Cloetingh, S.; Drijkoningen, G.G. Late orogenic vertical movements in the Carpathian Bend Zone—Seismic constraints on the transition zone from orogen to foredeep. Basin Res. 2006, 18, 521–545. [Google Scholar] [CrossRef]
- Martin, M.; Wenzel, F. High-resolution teleseismic body wave tomography beneath SE-Romania—II. Imaging of a slab detachment scenario. Geophys. J. Int. 2006, 164, 579–595. [Google Scholar] [CrossRef]
- Matenco, L.; Bertotti, G.; Leever, K.; Cloetingh, S.; Schmid, S.; Tărăpoancă, M.; Dinu, C. Large-scale deformation in a locked collisional boundary: Interplay between subsidence and uplift, intraplate stress, and inherited lithospheric structure in the late stage of the SE Carpathians evolution. Tectonics 2007, 26, TC4011. [Google Scholar] [CrossRef] [Green Version]
- Popa, M.; Radulian, M.; Szakács, A.; Seghedi, I.; Zaharia, B. New Seismic and Tomography Data in the Southern Part of the Harghita Mountains (Romania, Southeastern Carpathians): Connection with Recent Volcanic Activity. Pure Appl. Geophys. 2012, 169, 1557–1573. [Google Scholar] [CrossRef]
- Stănică, A.; Panin, N. Present evolution and future predictions for the deltaic coastal zone between the Sulina and Sf. Gheorghe Danube river mouths (Romania). Geomorphology 2009, 107, 41–46. [Google Scholar] [CrossRef]
- Szakacs, A.; Krezsek, C. Volcano-basement interaction in the Eastern Carpathians: Explaining unusual tectonic features in the Eastern Transylvanian Basin, Romania. J. Volcanol. Geotherm. Res. 2006, 158, 6–20. [Google Scholar] [CrossRef]
- Tiliţă, M.; Scheck-Wenderoth, M.; Matenco, L.; Cloetingh, S. Modelling the coupling between salt kinematics and subsidence evolution: Inferences for the Miocene evolution of the Transylvanian Basin. Tectonophysics 2015, 658, 169–185. [Google Scholar] [CrossRef]
- Niculescu, S.; Lardeux, C.; Hanganu, J. Alteration and Remediation of Coastal Wetland Ecosystems in the Danube Delta. A Remote-Sensing Approach. In Coastal Wetlands: Alteration and Remediation; Coastal Research Library; Finkl, C., Makowski, C., Eds.; Springer Nature: Cham, Switzerland, 2017; Volume 21, pp. 513–553. [Google Scholar] [CrossRef] [Green Version]
- Terrasigna PSTool—An Open Platform for Ground Monitoring Information. Available online: http://pstool.terrasigna.com/ (accessed on 15 February 2022).
- ROSE-L, ESA - Contract Signed for New Copernicus ROSE-L Mission. Available online: https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Contract_signed_for_new_Copernicus_ROSE-L_mission (accessed on 15 February 2022).
- Geoserver.org. Available online: http://geoserver.org/about/ (accessed on 7 February 2022).
- MapProxy.org. Available online: https://mapproxy.org/ (accessed on 7 February 2022).
- Apache Web Server. Available online: https://httpd.apache.org/ (accessed on 7 February 2022).
- OpenLayers Library. Available online: https://openlayers.org/ (accessed on 7 February 2022).
- PostreSQL, PostgreSQL. Available online: https://www.postgresql.org/ (accessed on 7 February 2022).
- PostGIS, PostGIS. Available online: https://postgis.net/ (accessed on 7 February 2022).
- MySQL. Available online: https://www.mysql.com/ (accessed on 7 February 2022).
- Toma, S.-A.; Teleagă, D.; Poncoş, V.; Grozea, C. Ground Motion Patterns Analysis from the National Persistent Scatterer Deformation Map of Romania. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels, Belgium, 11–16 July 2021; pp. 6237–6239. [Google Scholar] [CrossRef]
- National Institute for Research and Development of Earth Physics (NIEP). GNSS Measurements Results in Romania. Available online: http://tsunami.infp.ro/en/gnss_network.php (accessed on 15 February 2022).
- Bányai, L.; Szűcs, E.; Wesztergom, V. Geometric features of LOS data derived by SAR PSI technologies and the three-dimensional data fusion. Acta Geod. Geophys. 2017, 52, 421–436. [Google Scholar] [CrossRef] [Green Version]
- Transformations between ECEF and ENU Coordinates. Available online: https://gssc.esa.int/navipedia/index.php/Transformations_between_ECEF_and_ENU_coordinates (accessed on 15 February 2022).
- ESA GNSS-Book TM-23 Vol II. Available online: https://www.scribd.com/document/459240968/ESA-GNSS-Book-TM-23-Vol-II-pdf (accessed on 15 February 2022).
- Dumitrescu, I.; Sandulescu, M. Tectonic map of Romania, scale 1:1000000. In Geological Atlas, Sheet no. 6; Geological Institute of Romania: Bucharest, Romania, 1970. [Google Scholar]
- Copernicus DEM. Available online: https://spacedata.copernicus.eu/explore-more/news-archive/-/asset_publisher/Ye8egYeRPLEs/blog/id/434960 (accessed on 15 February 2022).
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent Scatterer Interferometry: A review. ISPRS J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Lanari, R.; Casu, F.; Manzo, M.; Zeni, G.; Berardino, P.; Manunta, M.; Pepe, A. An Overview of the Small BAseline Subset Algorithm: A DInSAR Technique for Surface Deformation Analysis. Pure Appl. Geophys. 2007, 164, 637–661. [Google Scholar] [CrossRef]
- EPOS Geodesy and InSAR Data. Available online: https://www.ics-c.epos-eu.org/data/search (accessed on 15 February 2022).
- Rao, K.S.; Chandra, G.; Narasimha Rao, P.V. Study on penetration depth and its dependence on frequency, soil moisture, texture and temperature in the context of microwave remote sensing. J. Indian Soc. Remote Sens. 1988, 16, 7–19. [Google Scholar] [CrossRef]
- Romania National Atlas of Ground Stability. Available online: http://www.terrasigna.com/uploads/downloads/TERRASIGNA_Ground_Motion_Romania.pdf (accessed on 15 February 2022).
- Nikolov, V. The prehistoric salt-production and urban center of Provadia-Solnitsata, Northeastern Bulgaria. Mediter. J. Mediterr. Geogr. 2016, 126, 71–78. [Google Scholar] [CrossRef]
- Paskaleva, I.; Nikolova, S.; Dimitrova, L.; Georgieva, G. Monitoring networks—Way for improving risk assessment from natural and man-made hazards: Case study salt mine Provadia (NE Bulgaria). Acta Geod. Geoph. Hung. 2010, 45, 388–402. [Google Scholar] [CrossRef]
- Botev, E.; Glavcheva, R.; Matova, M. Provadia region in Bulgaria—Natural or induced seismicity? Rep. Geod. 2006, 5/80, 247–255. [Google Scholar]
- Dimitrov, D.; Georgiev, I.; Dimitrova, L.; Botev, E. Deformations and seismicity in the region of Mirovo salt deposit, Bulgaria. In Conference Proceedings, 7th Congress of the Balkan Geophysical Society; European Association of Geoscientists & Engineers: Tirana, Albania, 2013; cp-362-00058; ISBN 978-90-73834-55-2. [Google Scholar] [CrossRef]
- Szűcs, E.; Gönczy, S.; Bozsó, I.; Bányai, L.; Szakács, A.; Szárnya, C.S.; Wesztergom, V. Evolution of surface deformation related to salt extraction-caused sinkholes in Solotvyno (Ukraine) revealed by Sentinel-1 radar interferometry. Nat. Hazards Earth Syst. Sci. 2021, 21, 977–993. [Google Scholar] [CrossRef]
- Chiriac, M.; Mutihac, V.; Mirăuţă, O. Geological Map of Romania, Scale 1:200000, Constanta Sheet; Geological Institute of Romania: Bucharest, Romania, 1968. [Google Scholar]
- Videle Oil Field. Available online: https://www.morebooks.de/store/fr/book/videle-oil-field/isbn/978-613-3-58421-1 (accessed on 15 February 2022).
- Stanica, A.; Dan, S.; Ungureanu, V.G. Coastal changes at the Sulina mouth of the Danube River as a result of human activities. Mar. Pollut. Bull. 2007, 55, 555–563. [Google Scholar] [CrossRef]
- Cuenca, M.C.; Hanssen, R. Subsidence due to peat decomposition in the Netherlands: Kinematic observations from radar interferometry. In Proceedings of the Fifth International Workshop on ERS/Envisat SAR Interferometry ‘FRINGE07’, Frascati, Italy, 26–30 November 2008; pp. 1–6. [Google Scholar]
- Hoyt, A.M.; Chaussard, E.; Seppalainen, S.S.; Harvey, C.F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 2020, 13, 435–440. [Google Scholar] [CrossRef]
- Krézsek, C.; Bally, A.W. The Transylvanian Basin (Romania) and its relation to the Carpathian fold and trust belt: Insights in gravitational salt tectonics. Mar. Pet. Geol. 2006, 23, 405–442. [Google Scholar] [CrossRef]
- Map of Natural Gas Storage and Injection Wells in Targu Mures, Romania. Available online: http://www.depomures.ro/Harta_distante_zone_siguranta.pdf (accessed on 15 February 2022).
- Aggregated Storage Gas Inventory. Available online: https://agsi.gie.eu/#/graphs/21Z000000000309P/RO/21X000000001300T (accessed on 15 February 2022).
- Van Thienen-Visser, K.; Fokker, P.A. The future of subsidence modelling: Compaction and subsidence due to gas depletion of the Groningen gas field in the Netherlands. Neth. J. Geosci. 2017, 96, s105–s116. [Google Scholar] [CrossRef] [Green Version]
- Hefty, J. Work-Package 5 of the CERGOP-2/Environment: GPS data analysis and the definition of reference frames, Activity report April 2004—September 2004. Rep. Geod. 2004, 4, 23–34. [Google Scholar]
- Hefty, J. Work-Package 7 of the CERGOP-2/Environment: Geokinematical modelling and strain analysis activity report April 2004—September 2004. Rep. Geod. 2004, 4, 39–42. [Google Scholar]
- Milev, G.; Vassileva, K. Geodynamics of the Balkan Peninsula and Bulgaria. In Proceedings of the International Symposium on Strong Vrancea Earthquakes and Risk Mitigation, Bucharest, Romania, 4–6 October 2007; pp. 55–70. Available online: http://digbib.ubka.uni-karlsruhe.de/volltexte/beilagen/1/proceedings/pdf/10_Symposium_Bucharest_07_040_Milev.pdf (accessed on 15 February 2022).
- Munteanu, L. Tectonic blocks movement in and around Vrancea, based on precise GPS measurements. In Researches Related to the Disaster Management of Romanian Earthquakes; Tehnopress: Iaşi, Romania, 2009. (In Romanian) [Google Scholar]
- Necea, D.; Juez-Larré, J.; Matenco, L.; Andriessen, P.A.M.; Dinu, C. Foreland migration of orogenic exhumation during nappe stacking: Inferences from a high-resolution thermochronological profile over the Southeast Carpathians. Glob. Planet. Chang. 2021, 200, 103457. [Google Scholar] [CrossRef]
- Visarion, M.; Săndulescu, M.; Drăgoescu, I.; Drăghici, M.; Cornea, I.; Popescu, M. Map of Recent Vertical Crustal Movements, 1:1000000; Geological Institute of Romania: Bucharest, Romania, 1977. (In Romanian) [Google Scholar]
- Indicative Copernicus Constellation Deployment Schedule. p. 136. Available online: https://www.copernicus.eu/sites/default/files/2019-01/Copernicus_Work_Programme_2019.pdf (accessed on 15 February 2022).
- Crosetto, M.; Solari, L.; Mróz, M.; Balasis-Levinsen, J.; Casagli, N.; Frei, M.; Oyen, A.; Moldestad, D.A.; Bateson, L.; Guerrieri, L.; et al. The Evolution of Wide-Area DInSAR: From Regional and National Services to the European Ground Motion Service. Remote Sens. 2020, 12, 2043. [Google Scholar] [CrossRef]
- NASA Alaska SAR Facility Data and Processing Platform. Available online: https://asf.alaska.edu/ (accessed on 15 February 2022).
- Fiorentini, N.; Maboudi, M.; Leandri, P.; Losa, M. Can Machine Learning and PS-InSAR Reliably Stand in for Road Profilometric Surveys? Sensors 2021, 21, 3377. [Google Scholar] [CrossRef]
GNSS | Reference | East | North | Up | Heading [°] | Incidence [°] | LOS [mm/Year] |
---|---|---|---|---|---|---|---|
SULN | AEGY | −0.03 | 0.17 | −5.2 | 193.98 | 39.39 | −3.91 |
GNSS | Reference | East | North | Up | Heading [°] | Incidence [°] | LOS [mm/Year] |
---|---|---|---|---|---|---|---|
CRCL | IGEO | 1.9 | −0.41 | 1.33 | 193.98 | 39.39 | 1.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poncoş, V.; Stanciu, I.; Teleagă, D.; Maţenco, L.; Bozsó, I.; Szakács, A.; Birtas, D.; Toma, Ş.-A.; Stănică, A.; Rădulescu, V. An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe. Remote Sens. 2022, 14, 1046. https://doi.org/10.3390/rs14041046
Poncoş V, Stanciu I, Teleagă D, Maţenco L, Bozsó I, Szakács A, Birtas D, Toma Ş-A, Stănică A, Rădulescu V. An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe. Remote Sensing. 2022; 14(4):1046. https://doi.org/10.3390/rs14041046
Chicago/Turabian StylePoncoş, Valentin, Irina Stanciu, Delia Teleagă, Liviu Maţenco, István Bozsó, Alexandru Szakács, Dan Birtas, Ştefan-Adrian Toma, Adrian Stănică, and Vlad Rădulescu. 2022. "An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe" Remote Sensing 14, no. 4: 1046. https://doi.org/10.3390/rs14041046
APA StylePoncoş, V., Stanciu, I., Teleagă, D., Maţenco, L., Bozsó, I., Szakács, A., Birtas, D., Toma, Ş.-A., Stănică, A., & Rădulescu, V. (2022). An Integrated Platform for Ground-Motion Mapping, Local to Regional Scale; Examples from SE Europe. Remote Sensing, 14(4), 1046. https://doi.org/10.3390/rs14041046