Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 TM Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Approach
2.2.1. Acquisition and Processing of Satellite Data
2.2.2. Assembling WQPs Data and Associated Band Values
2.2.3. Development of Multiple Regression Equation between WQPs and Landsat Band Values
2.3. Spatio-Temporal Variation of WQPs
3. Results
3.1. Reservoir Conditions
3.2. Relations of Band Compositions with TP, BOD, and CHL-a
3.3. Empirical Model Development of TP, BOD, and CHL-a from Landsat 5 TM Data
3.4. Spatial and Temporal Patterns of Water Quality Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mushtaq, F.; Nee Lala, M.G. Remote estimation of water quality parameters of Himalayan lake (Kashmir) using Landsat 8 OLI imagery. Geocarto Int. 2017, 32, 274–285. [Google Scholar] [CrossRef]
- Mamun, M.; Kim, J.Y.; An, K.-G. Multivariate Statistical Analysis of Water Quality and Trophic State in an Artificial Dam Reservoir. Water 2021, 13, 186. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Shi, K.; Zhu, G.; Zhou, Y.; Zhang, Y.; Guo, Y. Monitoring spatiotemporal variations in nutrients in a large drinking water reservoir and their relationships with hydrological and meteorological conditions based on Landsat 8 imagery. Sci. Total Environ. 2017, 599, 1705–1717. [Google Scholar] [CrossRef]
- Torbick, N.; Hession, S.; Hagen, S.; Wiangwang, N.; Becker, B.; Qi, J. Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens. 2013, 34, 7607–7624. [Google Scholar] [CrossRef]
- Mamun, M.; Kwon, S.; Kim, J.E.; An, K.G. Evaluation of algal chlorophyll and nutrient relations and the N:P ratios along with trophic status and light regime in 60 Korea reservoirs. Sci. Total Environ. 2020, 741, 140451. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.H. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol. Oceanogr. 2006, 51, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Rabalais, N.N.; Turner, R.E.; Díaz, R.J.; Justić, D. Global change and eutrophication of coastal waters. ICES J. Mar. Sci. 2009, 66, 1528–1537. [Google Scholar] [CrossRef]
- Li, Y.; Cao, W.; Su, C.; Hong, H. Nutrient sources and composition of recent algal blooms and eutrophication in the northern Jiulong River, Southeast China. Mar. Pollut. Bull. 2011, 63, 249–254. [Google Scholar] [CrossRef]
- Jones, J.R.; Obrecht, D.V.; Thorpe, A.P. Chlorophyll maxima and chlorophyll: Total phosphorus ratios in Missouri reservoirs. Lake Reserv. Manag. 2011, 27, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Atique, U.; An, K.G. Landscape heterogeneity impacts water chemistry, nutrient regime, organic matter and chlorophyll dynamics in agricultural reservoirs. Ecol. Indic. 2020, 110, 105813. [Google Scholar] [CrossRef]
- Eun, H.N.; Seok, S.P. A hydrodynamic modeling study to determine the optimum water intake location in Lake Paldang, Korea. J. Am. Water Resour. Assoc. 2005, 41, 1315–1332. [Google Scholar] [CrossRef]
- Boopathi, T.; Wang, H.; Lee, M.-D.; Ki, J.-S. Seasonal Changes in Cyanobacterial Diversity of a Temperate Freshwater Paldang Reservoir (Korea) Explored by using Pyrosequencing. Environ. Biol. Res. 2018, 36, 424–437. [Google Scholar] [CrossRef]
- MOE. (ECOREA) Environmental Review 2015; Ministry of Environment: Sejong City, Korea, 2015; Volume 1. [Google Scholar]
- Lee, J.E.; Youn, S.J.; Byeon, M.; Yu, S.J. Occurrence of cyanobacteria, actinomycetes, and geosmin in drinking water reservoir in Korea: A case study from an algal bloom in 2012. Water Sci. Technol. Water Supply 2020, 20, 1862–1870. [Google Scholar] [CrossRef]
- Kim, D.W.; Min, J.H.; Yoo, M.; Kang, M.; Kim, K. Long-term effects of hydrometeorological and water quality conditions on algal dynamics in the Paldang dam watershed, Korea. Water Sci. Technol. Water Supply 2014, 14, 601–608. [Google Scholar] [CrossRef]
- Park, H.K.; Cho, K.H.; Won, D.H.; Lee, J.; Kong, D.S.; Jung, D. Il Ecosystem responses to climate change in a large on-river reservoir, Lake Paldang, Korea. Clim. Chang. 2013, 120, 477–489. [Google Scholar] [CrossRef]
- Youn, S.J.; Kim, H.N.; Yu, S.J.; Byeon, M.S. Cyanobacterial occurrence and geosmin dynamics in Paldang Lake watershed, South Korea. Water Environ. J. 2020, 1–10. [Google Scholar] [CrossRef]
- Park, H.K.; Byeon, M.S.; Shin, Y.N.; Jung, D. Il Sources and spatial and temporal characteristics of organic carbon in two large reservoirs with contrasting hydrologic characteristics. Water Resour. Res. 2009, 45, 1–12. [Google Scholar] [CrossRef]
- Khattab, M.F.O.; Merkel, B.J. Application of landsat 5 and landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. Arab. J. Geosci. 2014, 7, 3557–3573. [Google Scholar] [CrossRef]
- Lim, J.; Choi, M. Assessment of water quality based on Landsat 8 operational land imager associated with human activities in Korea. Environ. Monit. Assess. 2015, 187, 1–17. [Google Scholar] [CrossRef]
- Ferdous, J.; Rahman, M.T.U. Developing an empirical model from Landsat data series for monitoring water salinity in coastal Bangladesh. J. Environ. Manag. 2020, 255, 109861. [Google Scholar] [CrossRef]
- Kumar, V.; Sharma, A.; Chawla, A.; Bhardwaj, R.; Thukral, A.K. Water quality assessment of river Beas, India, using multivariate and remote sensing techniques. Environ. Monit. Assess. 2016, 188, 1–10. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Shi, K.; Zhou, Y.; Li, N. Remote sensing estimation of water clarity for various lakes in China. Water Res. 2021, 192. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, S.; Zhou, Y.; Troy, A. Mapping the concentrations of total suspended matter in Lake Taihu, China, using Landsat-5 TM data. Int. J. Remote Sens. 2006, 27, 1177–1191. [Google Scholar] [CrossRef]
- Brezonik, P.; Menken, K.D.; Bauer, M. Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter (CDOM). Lake Reserv. Manag. 2005, 21, 373–382. [Google Scholar] [CrossRef]
- Miller, H.; Sexton, N.; Koontz, L.; Loomis, J.; Koontz, S.; Hermans, C. The Users, Uses, and Value of Landsat and Other Moderate-Resolution Satellite Imagery in the United States—Executive Report; U.S. Geological Survey: Reston, VA, USA, 2011.
- Wu, C.; Wu, J.; Qi, J.; Zhang, L.; Huang, H.; Lou, L.; Chen, Y. Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data. Int. J. Remote Sens. 2010, 31, 2309–2324. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gholizadeh, M.H. Water Quality Modelling Using Multivariate Statistical Analysis and Remote Sensing in South Florida. Ph.D. Thesis, Florida International University, Miami, FL, USA, 2016. [Google Scholar]
- Nas, B.; Ekercin, S.; Karabörk, H.; Berktay, A.; Mulla, D.J. An application of landsat-5TM image data for water quality mapping in Lake Beysehir, Turkey. Water Air Soil Pollut. 2010, 212, 183–197. [Google Scholar] [CrossRef]
- Ghorai, D.; Mahapatra, M. Correction to: Extracting Shoreline from Satellite Imagery for GIS Analysis. Remote Sens. Earth Syst. Sci. 2020, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.R.K.; Prinz, T.; Ziller, S.R.; Thiele, J.; Heringer, G.; Meira-Neto, J.A.A.; Buttschardt, T.K. Open-source processing and analysis of aerial imagery acquired with a low-cost Unmanned Aerial System to support invasive plant management. Front. Environ. Sci. 2017, 5, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.T.U.; Ferdous, J. Detection of Environmental Degradation of Satkhira District, Bangladesh Through Remote Sensing Indices. In GCEC 2017; Pradhan, B., Ed.; Lecture Notes in Civil Engineering; Springer: Singapore, 2019; Volume 9, pp. 1053–1066. ISBN 9789811080166. [Google Scholar]
- Congedo, L. Semi-Automatic Classification Plugin User Manual Release 5.3.6.1; RoMEO: Paterson, NJ, USA, 2017. [Google Scholar]
- Nürnberg, G.K. Trophic state of clear and colored, soft- and hardwater lakes with special consideration of nutrients, anoxia, phytoplankton and fish. Lake Reserv. Manag. 1996, 12, 432–447. [Google Scholar] [CrossRef]
- Carlson, R.E.; Havens, K.E. Simple graphical methods for the interpretation of relationships between trophic state variables. Lake Reserv. Manag. 2005, 21, 107–118. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality: Management of Cyanobacteria in Drinking Water Suppliers Information for Regulators and Water Suppliers, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Jung, S.; Shin, M.; Kim, J.; Eum, J.; Lee, Y.; Lee, J.; Choi, Y.; You, K.; Owen, J.; Kim, B. The effects of Asian summer monsoons on algal blooms in reservoirs. Inland Waters 2016, 6, 406–413. [Google Scholar] [CrossRef]
- Quibell, G. The effect of suspended sediment on reflectance from freshwater algae. Int. J. Remote Sens. 1991, 12, 177–182. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
Sites | TP (μg/L) Mean ± SD (Min−Max) | BOD (mg/L) Mean ± SD (Min−Max) | CHL-a (µg/L) Mean ± SD (Min−Max) |
---|---|---|---|
S1 | 50.93 ± 29.51 | 1.15 ± 0.56 | 13.61 ± 6.16 |
(28–142) | (0.4–2) | (1.1–49.1) | |
S2 | 52.81 ± 27.35 | 1.31 ± 0.61 | 15.37 ± 12.14 |
(29–140) | (0.4–2.3) | (0.9–37.5 | |
S3 | 34.75 ± 22.94 | 1.05 ± 0.35 | 10.89 ± 6.83 |
(11–100) | (0.4–1.5) | (1.2–24.4) | |
S4 | 92.06 ± 66.66 | 1.72 ± 0.68 | 27.74 ± 14.37 |
(11–236) | (0.8–3.5) | (3–132) | |
S5 | 43.25 ± 28.18 | 1.18 ± 0.37 | 16.71 ± 11.52 |
(12–116) | (0.7–1.9) | (5.3–42.5) |
Variables | r Value | p | |
---|---|---|---|
BOD | TP | 0.249 | 0.02 |
BOD | CHL-a | 0.627 | <0.001 |
TP | CHL-a | 0.375 | <0.001 |
Band Composition | r-Values | ||
---|---|---|---|
TP | BOD | CHL-a | |
B1 | −0.79 | −0.75 | −0.79 |
B2 | −0.76 | −0.74 | −0.76 |
B3 | −0.74 | −0.71 | −0.75 |
B4 | −0.68 | −0.60 | −0.53 |
B1*B2 | −0.70 | −0.71 | −0.72 |
B1*B3 | −0.68 | −0.67 | −0.70 |
B1*B4 | −0.65 | −0.63 | −0.62 |
B2*B3 | −0.66 | −0.65 | −0.68 |
B2*B4 | −0.63 | −0.62 | −0.56 |
B3*B4 | −0.61 | −0.58 | −0.58 |
B1*B2*B3 | −0.58 | −0.57 | −0.61 |
B1*B2*B4 | −0.57 | −0.55 | −0.55 |
B1*B3*B4 | −0.55 | −0.52 | −0.53 |
B2*B3*B4 | −0.54 | −0.50 | −0.51 |
B1/B2 | −0.42 | −0.25 | −0.39 |
B1/B3 | −0.20 | −0.15 | −0.28 |
B1/B4 | −0.28 | −0.36 | −0.33 |
B2/B3 | 0.31 | 0.18 | 0.12 |
B2/B4 | −0.07 | −0.27 | −0.18 |
B3/B4 | −0.27 | −0.41 | −0.24 |
B1*B2/B3 | −0.76 | −0.73 | −0.75 |
B1*B2/B4 | −0.72 | −0.74 | −0.72 |
B1*B3/B2 | −0.78 | −0.73 | −0.78 |
B1*B3/B4 | −0.78 | −0.76 | −0.75 |
B1*B4/B2 | −0.72 | −0.61 | −0.63 |
B1*B4/B3 | −0.73 | −0.63 | −0.58 |
B2*B3/B1 | −0.65 | −0.64 | −0.65 |
B2*B3/B4 | −0.75 | −0.74 | −0.72 |
B1*B2*B3/B4 | −0.71 | −0.71 | −0.72 |
B1*B2*B4/3 | −0.67 | −0.66 | −0.59 |
B1*B3*B4/2 | −0.63 | −0.59 | −0.60 |
B2*B3*B4/B1 | −0.59 | −0.55 | −0.51 |
Sensor | WQPs | Equations | R2 | p | RMSE | RMSLE | MRE | MAE |
---|---|---|---|---|---|---|---|---|
Landsat 5 TM | TP | =91.01 − 268.22*B*NIR/G − 347.50*G*R/NIR + 1194.55*B*G*R/NIR | 0.67 | <0.01 | 30.4 | 0.072 | 0.11 | 3.39 |
BOD | =1.83 − 127.38*B*G + 13.39*B*G/NIR + 18.50*B*R/G − 36.74*B*R/NIR + 122.78*B*G*R/NIR | 0.65 | <0.01 | 0.08 | 0.058 | 0.25 | 0.23 | |
CHL-a | =39.40 + 548.80*G − 778.68*R + 1396.84*B*R − 243.21*B*G/R | 0.72 | <0.01 | 4.9 | 0.155 | 0.34 | 1.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamun, M.; Ferdous, J.; An, K.-G. Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 TM Data. Remote Sens. 2021, 13, 2256. https://doi.org/10.3390/rs13122256
Mamun M, Ferdous J, An K-G. Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 TM Data. Remote Sensing. 2021; 13(12):2256. https://doi.org/10.3390/rs13122256
Chicago/Turabian StyleMamun, Md, Jannatul Ferdous, and Kwang-Guk An. 2021. "Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 TM Data" Remote Sensing 13, no. 12: 2256. https://doi.org/10.3390/rs13122256
APA StyleMamun, M., Ferdous, J., & An, K.-G. (2021). Empirical Estimation of Nutrient, Organic Matter and Algal Chlorophyll in a Drinking Water Reservoir Using Landsat 5 TM Data. Remote Sensing, 13(12), 2256. https://doi.org/10.3390/rs13122256