Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake
Abstract
:1. Introduction
2. Data and Calculation Methods
2.1. Infrared Data and Methods
2.2. TEC Data and Methods
3. Results and Discussion
3.1. Spatial Evolution of Infrared Anomalies
3.2. Time Series of Infrared Power Spectra Anomalies
3.3. Comparison of Anomalous Infrared Power Spectra
3.4. Extraction of Ionospheric TEC Anomalies
3.5. Comparative Analysis of Thermal Radiation and Ionospheric TEC Anomalies
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pulinets, S.A.; Boyarchuk, K.A. Ionospheric Precursors of Earthquakes; Springer: Berlin/Heidelberg, Germany, 2004; pp. 1–289. [Google Scholar]
- Hayakawa, M.; Molchanov, O.A. Seismo-Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling; Terra Scientific Publishing Co.: Tokyo, Japan, 2002; p. 477. [Google Scholar]
- Kuo, C.L.; Lee, L.C.; Huba, J.D. An improved coupling model for the lithosphere-atmosphere-ionosphere system. J. Geophys. Res. Space Phys. 2014, 119, 3189–3205. [Google Scholar] [CrossRef]
- Pulinets, S.; Ouzounov, D. Lithosphere–Atmosphere–Ionosphere Coupling (LAIC) model–An unified concept for earthquake precursors validation. J. Asian Earth Sci. 2011, 41, 371–382. [Google Scholar] [CrossRef]
- Gorny, V.I.; Salman, A.G.; Tronin, A.A.; Shilin, B.B. Terrestrial outgoing infrared radiation as an indicator of seismic activity. Proc. Acad. Sci. USSR 1988, 30, 67–69. [Google Scholar]
- Ouzounov, D.; Freund, F. Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data. Adv. Space Res. 2004, 33, 268–273. [Google Scholar] [CrossRef]
- Ouzounov, D.; Bryant, N.; Logan, T.; Pulinets, S.; Taylor, P. Satellite thermal IR phenomena associated with some of the major earthquakes in 1999–2003. Phys. Chem. Earth 2006, 31, 154–163. [Google Scholar] [CrossRef]
- Yang, G.; Mi, Y.Q. Thermal anomalies and earthquakes: Evidence from Wenchuan, China. Earthq. Res. China 2009, 23, 48–55. [Google Scholar]
- Zhang, Y.; Kang, C.L.; Ma, W.Y.; Yao, Q. The change in outgoing longwave radiation before the Ludian Ms6. 5 earthquake based on tidal force niche cycles. Earthq. Res. China 2017, 31, 422–430. [Google Scholar]
- Qin, K.; Wu, L.; Zheng, S.; Ma, W. Discriminating satellite IR anomalies associated with the Ms 7.1 Yushu earthquake in China. Adv. Space Res. 2018, 61, 1324–1331. [Google Scholar] [CrossRef]
- Liu, F.; Xin, H.; Zhang, T.B.; Lu, Q.; Ren, Y. Time series analysis on the ratio for pixels with abnormal brightness temperature increase and its variation before some earthquakes with Ms ≥ 5·0 in the Taiwan area. Earthq. Res. China 2007, 21, 437–444. [Google Scholar]
- Tronin, A.; Hayakawa, M.; Molchanov, O.A. Thermal IR satellite data application for earthquake research in Japan and China. J. Geodyn. 2002, 33, 519–534. [Google Scholar] [CrossRef]
- Xu, X.D.; Xu, X.M.; Wang, Y. Satellite infrared anomaly before Nantou Ms=7.6 earthquake in Taiwan, China. Acta Seismol. Sin. 2000, 22, 666–669. [Google Scholar]
- Zhang, Y.S.; Guo, X.; Zhong, M.J.; Shen, W.R.; Li, W.; He, B. Wenchuan earthquake: Brightness temperature changes from satellite infrared information. Chin. Sci. Bull. 2010, 55, 1917–1924. [Google Scholar] [CrossRef]
- Kuo, C.L.; Huba, J.D.; Joyce, G.; Lee, L.C. Ionosphere plasma bubbles and density variations induced by pre-earthquake rock currents and associated surface charges. J. Geophys. Res. 2011, 116, A10317. [Google Scholar] [CrossRef] [Green Version]
- Sorokin, V.M.; Chmyrev, V.M.; Yaschenko, A.K. Theoretical model of DC electric field formation in the ionosphere stimulated by seismic activity. J. Atmos. Sol. Terr. Phys. 2005, 67, 1259–1268. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sasmal, S.; Basak, T.; Ghosh, S.; Palit, S.; Chakrabarti, S.K.; Ray, S. Numerical modeling of possible lower ionospheric anomalies associated with Nepal earthquake in May, 2015. Adv. Space Res. 2017, 60, 1787–1796. [Google Scholar] [CrossRef]
- Chum, J.; Liu, J.Y.; Podolská, K. Infrasound in the ionosphere from earthquakes and typhoons. J. Atmos. Sol. Terr. Phys. 2017, 171, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Freund, F. Pre-earthquake signals: Underlying physical processes. J. Asian Earth Sci. 2011, 41, 383–400. [Google Scholar] [CrossRef]
- Molchanov, O.A.; Hayakawa, M. Seismo Electromagnetics and Related Phenomena: History and Latest Results; TERRAPUB: Tokyo, Japan, 2008; p. 189. [Google Scholar]
- Pulinets, S.A. Physical mechanism of the vertical electric field generation over active tectonic faults. Adv. Space Res. 2009, 44, 767–773. [Google Scholar] [CrossRef]
- Hegai, V.V.; Kim, V.P.; Liu, J.Y. The ionospheric effect of atmospheric gravity waves excited prior to strong earthquake. Adv. Space Res. 2006, 37, 653–659. [Google Scholar] [CrossRef]
- Li, W.; Guo, J.Y.; Yu, X.M.; Yu, H.J. Analysis of ionospheric anomaly preceding the Mw7. 3 Yutian earthquake. Geod. Geodyn. 2014, 5, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.Y.; Wu, Y. Anomalous variations in ionospheric TEC prior to the 2011 Japan Ms9.0 earthquake. Geod. Geodyn. 2011, 2, 8–11. [Google Scholar] [CrossRef] [Green Version]
- Zahra, S.; Masoud, M.H. Application of the T2-Hotelling test for investigating ionospheric anomalies before large earthquakes. J. Atmos. Sol. Terr. Phys. 2019. [Google Scholar] [CrossRef]
- Li, J.Y.; Meng, G.J.; Wang, M.; Liao, H.; Shen, X.H. Investigation of ionospheric TEC changes related to the 2008 Wenchuan earthquake based on statistic analysis and signal detection. Earthq. Sci. 2009, 22, 545–553. [Google Scholar] [CrossRef] [Green Version]
- Shalimova, S.L.; Nesterovc, I.A.; Vorontsovc, A.M. On the GPS-based ionospheric perturbation after the Tohoku earthquake of March 11, 2011. Phys. Solid Earth 2017, 53, 262–273. [Google Scholar] [CrossRef]
- Akhoondzadeh, M.; Santis, A.D.; Marchetti, D.; Piscini, A.; Cianchini, G. Multi precursors analysis associated with the powerful ecuador (MW = 7.8) earthquake of 16 April 2016 using Swarm satellites data in conjunction with other multi-platform satellite and ground data. Adv. Space Res. 2018, 61, 248–263. [Google Scholar] [CrossRef] [Green Version]
- Santis, A.D.; Balasis, G.; Pavon-Carrasco, F.J.; Cianchini, G.; Mandea, M. Potential earthquake precursory pattern from space: The 2015 Nepal event as seen by magnetic Swarm satellites. Earth Planet. Sci. Lett. 2017, 461, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Parrot, M. Use of satellites to detect seismo-electromagnetic effects, main phenomenological features of ionospheric precursors of strong earthquakes. Adv. Space Res. 1995, 15, 1337–1347. [Google Scholar] [CrossRef]
- Yuan, Y.B.; Li, Z.S.; Wang, N.B.; Zhang, B.C.; Li, H.; Li, M.N.; Huo, X.L.; Ou, J.K. Monitoring the ionosphere based on the crustal movement observation network of china. Geod. Geodyn. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Le, H.J.; Liu, J.Y.; Liu, L. A statistical analysis of ionospheric anomalies before 736 M6.0+ earthquakes during 2002–2010. J. Geophys. Res. 2011, 116, A02303. [Google Scholar] [CrossRef]
- Liu, J.; Wan, W.X. Spatial-temporal distribution of the ionospheric perturbations prior to Ms≥6.0 earthquakes in China mainland. Chin. J. Geophys. 2014, 57, 2181–2189. [Google Scholar]
- He, Y.; Yang, D.; Qian, J.; Parrot, M. Response of the ionospheric electron density to different types of seismic events. Nat. Hazard Earth Syst. Sci. 2011, 11, 2173–2180. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Parrot, M. Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res. 2013, 118, 3731–3739. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.X.; Qin, K.; Liu, S.J. GEOSS-Based Thermal Parameters Analysis for Earthquake Anomaly Recognition. Proc. IEEE 2012, 100, 2891–2907. [Google Scholar] [CrossRef]
- Lu, X.; Meng, Q.Y.; Gu, X.F.; Zhang, X.D.; Xiong, P.; Ma, W.Y.; Xie, T. Multi-parameters of thermal infrared remote sensing anomalies of the earthquake. Earthq. Res. China 2016, 30, 500–512. [Google Scholar] [CrossRef] [Green Version]
- Piscini, A.; De Santis, A.; Marchetti, D.; Cianchini, G. A multiparametric climatological approach to study the 2016 Amatrice-Norcia (Central Italy) earthquake preparatory phase. Pure Appl. Geophys. 2017, 174, 3673–3688. [Google Scholar] [CrossRef]
- Xu, X.W.; Chen, G.H.; Wang, Q.X.; Chen, J.C.; Ren, Z.K.; Xu, C.; Wei, Z.Y.; Lu, R.Q.; Tan, X.B.; Dong, S.P.; et al. Discussion on seismogenic structure of Jiuzhaigou earthquake and its implication for current strain state in the southeastern Qinghai-Tibet Plateau. Chin. J. Geophys. 2017, 60, 4018–4026. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, L.F.; Guo, X.; Zhang, X.; Tu, H.W. Anomaly of thermal infrared brightness temperature and basin effect before Jiuzhaigou MS7.0 earthquake in 2017. Acta Seismol. Sin. 2018, 40, 797–808. [Google Scholar] [CrossRef]
- Zhang, M.M.; Liu, Z.M.; Liu, P.; Chong, J.F. Analysis of ionospheric TEC anomalies before the Jiuzhaigou Ms7.0 earthquake. Eng. Survey Map. 2018, 27, 24–30. [Google Scholar] [CrossRef]
- Zhai, D.L.; Zhang, X.M.; Xiong, P.; Song, R. Detection of ionospheric TEC anomalies based on Prophet Time-series Forecasting Model. Earthquake 2019, 39, 46–62. [Google Scholar]
- Qiang, Z.J.; Dian, C.G.; Huang, F.L.; Zhao, Y. New remote sensing method of prospecting for petroleum zone of enrichment: Exploration-serving technique of satellite thermal infrared band. Chin. Sci. Bull. 1994, 39, 1822–1823. [Google Scholar]
- Huang, F.L.; Zhang, X.H.; Xia, X.H.; Qiang, Z.J.; Dian, C.G.; Zhang, Y.K. Distribution of methane and its homologues in lowlayer atmosphere over eastern China and seas. Chin. Sci. Bull. 1998, 43, 1902–1908. [Google Scholar] [CrossRef]
- Guo, W.Y.; Shan, X.J.; Qu, C.Y. Correlation between infrared anomalous and earthquakes in Tarim basin. Arid Land Geogr. 2006, 29, 736–741. (In Chinese) [Google Scholar]
- He, M.; Wu, L.X.; Cui, J.; Wang, W.; Qi, Y.; Mao, W.F.; Miao, Z.L.; Chen, B.Y.; Shen, X.H. Remote sensing anomalies of multiple geospheres before the Wenchuan earthquake and its spatiotemporal correlations. J. Remote Sens. 2020, 24, 681–700. [Google Scholar] [CrossRef]
Channel | Band (μm) | Pixel Ground Resolution (KM) | Usage |
---|---|---|---|
Infrared 1 | 10.3–11.3 | 5 | Day and night clouds, temperature of underlying surface, distinguishing cloud and snow |
Infrared 2 | 11.5–12.5 | 5 | Day and night clouds |
Infrared 3 | 6.3–7.6 | 5 | Top temperature of translucent cirrus clouds, middle and upper level water vapor |
Infrared 4 | 3.5–4.0 | 5 | Day and night clouds, high temperature targets |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhong, M.; Shan, X.; Zhang, X.; Qu, C.; Guo, X.; Jiao, Z. Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake. Remote Sens. 2020, 12, 2843. https://doi.org/10.3390/rs12172843
Zhong M, Shan X, Zhang X, Qu C, Guo X, Jiao Z. Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake. Remote Sensing. 2020; 12(17):2843. https://doi.org/10.3390/rs12172843
Chicago/Turabian StyleZhong, Meijiao, Xinjian Shan, Xuemin Zhang, Chunyan Qu, Xiao Guo, and Zhonghu Jiao. 2020. "Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake" Remote Sensing 12, no. 17: 2843. https://doi.org/10.3390/rs12172843
APA StyleZhong, M., Shan, X., Zhang, X., Qu, C., Guo, X., & Jiao, Z. (2020). Thermal Infrared and Ionospheric Anomalies of the 2017 Mw6.5 Jiuzhaigou Earthquake. Remote Sensing, 12(17), 2843. https://doi.org/10.3390/rs12172843