Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. Pre-Earthquake Data
2.2.2. Post-Earthquake Data
2.3. Landslide Inventory
2.4. Landslide Influencing Factors
2.4.1. Topography
2.4.2. Lithology and Fault
2.4.3. Human Activity
2.4.4. Seismic Parameters
2.5. U-Net Like Model for Post-Earthquake LSM
2.5.1. Traditional CNN and U-Net Model
2.5.2. Model Architecture
2.5.3. Input and Output
2.5.4. Training, Validation, and Independent Testing
- Precision, recall and F1 score
- Relative operative characteristics (ROC)
3. Results
3.1. Spatial Analysis of Landslides
3.2. LSM Result of U-Net Like Model
3.3. Compare with LR and SVM Models
4. Discussion
4.1. Sample Balance for Model Input
4.2. Total Convolutional Size of Model Architecture
4.3. Pixel Itself or Surrounding Pixels for LSM Task
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Lin, J.C.; Hsu, M.L.; Lin, C.W.; Horng, M.J.; Chen, T.C.; Milliman, J.; et al. Earthquake-triggered increase in sediment delivery from an active mountain belt. Geology 2004, 32, 733–736. [Google Scholar] [CrossRef]
- Yin, Y.P.; Wang, F.W.; Sun, P. Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 2009, 6, 139–152. [Google Scholar] [CrossRef]
- Shafique, M.; van der Meijde, M.; Khan, M.A. A review of the 2005 Kashmir earthquake-induced landslides; from a remote sensing prospective. J. Asian Earth Sci. 2016, 118, 68–80. [Google Scholar] [CrossRef]
- Bianchini, S.; Raspini, F.; Solari, L.; Del Soldato, M.; Ciampalini, A.; Rosi, A.; Casagli, N. From Picture to Movie: Twenty Years of Ground Deformation Recording Over Tuscany Region (Italy) With Satellite InSAR. Front. Earth Sci. 2018, 6. [Google Scholar] [CrossRef] [Green Version]
- Shafique, M. Spatial and temporal evolution of co-seismic landslides after the 2005 Kashmir earthquake. Geomorphology 2020, 362. [Google Scholar] [CrossRef]
- Khazai, B.; Sitar, N. Evaluation of factors controlling earthquake-induced landslides caused by Chi-Chi earthquake and comparison with the Northridge and Loma Prieta events. Eng. Geol. 2004, 71, 79–95. [Google Scholar] [CrossRef]
- Tang, C.; Zhu, J.; Liang, J.T. Emergency assessment of seismic landslide susceptibility: A case study of the 2008 Wenchuan earthquake affected area. Earthq. Eng. Eng. Vib. 2009, 8, 207–217. [Google Scholar] [CrossRef]
- Huang, F.; Cao, Z.; Guo, J.; Jiang, S.-H.; Li, S.; Guo, Z. Comparisons of heuristic, general statistical and machine learning models for landslide susceptibility prediction and mapping. CATENA 2020, 191, 104580. [Google Scholar] [CrossRef]
- Yalcin, A. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena 2008, 72, 1–12. [Google Scholar] [CrossRef]
- Ghosh, J.K.; Bhattacharya, D. Knowledge-Based Landslide Susceptibility Zonation System. J. Comput. Civ. Eng. 2010, 24, 325–334. [Google Scholar] [CrossRef]
- Xie, Y. Application of Grey Relational Analysis to the Optimal Selection of Landslide Treatment Scheme. In Proceedings of the ETP/ IITA World Congress in Applied Computing, Computer Science and Computer Engineering, Sanya, China, 8–9 August 2009; pp. 241–243. [Google Scholar]
- Brenning, A. Spatial prediction models for landslide hazards: Review, comparison and evaluation. Nat. Hazards Earth Syst. Sci. 2005, 5, 853–862. [Google Scholar] [CrossRef]
- Guzzetti, F.; Reichenbach, P.; Cardinali, M.; Galli, M.; Ardizzone, F. Probabilistic landslide hazard assessment at the basin scale. Geomorphology 2005, 72, 272–299. [Google Scholar] [CrossRef]
- Sharma, L.P.; Patel, N.; Ghose, M.K.; Debnath, P. Development and application of Shannon’s entropy integrated information value model for landslide susceptibility assessment and zonation in Sikkim Himalayas in India. Nat. Hazards 2015, 75, 1555–1576. [Google Scholar] [CrossRef]
- Ba, Q.Q.; Chen, Y.M.; Deng, S.S.; Wu, Q.J.; Yang, J.X.; Zhang, J.Y. An Improved Information Value Model Based on Gray Clustering for Landslide Susceptibility Mapping. ISPRS Int. J. Geo-Inf. 2017, 6, 18. [Google Scholar] [CrossRef]
- Pourghasemi, H.R.; Pradhan, B.; Gokceoglu, C.; Mohammadi, M.; Moradi, H.R. Application of weights-of-evidence and certainty factor models and their comparison in landslide susceptibility mapping at Haraz watershed, Iran. Arab. J. Geosci. 2013, 6, 2351–2365. [Google Scholar] [CrossRef]
- Zhu, C.H.; Wang, X.P.; Soc, I.C. Landslide Susceptibility Mapping: A Comparison of Information and Weights-of-Evidence Methods in Three Gorges Area. In Proceedings of the International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009; pp. 342–346. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S.; Nonomura, A.; Yamanaka, M.; Masuda, T.; Nishino, K. GIS-based weights-of-evidence modelling of rainfall-induced landslides in small catchments for landslide susceptibility mapping. Environ. Geol. 2008, 54, 311–324. [Google Scholar] [CrossRef]
- Poudyal, C.P.; Chang, C.; Oh, H.J.; Lee, S. Landslide susceptibility maps comparing frequency ratio and artificial neural networks: A case study from the Nepal Himalaya. Environ. Earth Sci. 2010, 61, 1049–1064. [Google Scholar] [CrossRef]
- Lee, S.; Sambath, T. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ. Geol. 2006, 50, 847–855. [Google Scholar] [CrossRef]
- Yin, K.L.; Yan, T.Z. Statistical Prediction Models for Slope Instability of Metamorphosed Rocks. In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; pp. 1269–1272. [Google Scholar]
- Pradhan, B. A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Comput. Geosci. 2013, 51, 350–365. [Google Scholar] [CrossRef]
- Wu, Y.; Ke, Y.; Chen, Z.; Liang, S.; Zhao, H.; Hong, H. Application of alternating decision tree with AdaBoost and bagging ensembles for landslide susceptibility mapping. CATENA 2020, 187, 104396. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A random forest model of landslide susceptibility mapping based on hyperparameter optimization using Bayes algorithm. Geomorphology 2020, 107201. [Google Scholar] [CrossRef]
- Hong, H.; Miao, Y.; Liu, J.; Zhu, A.X. Exploring the effects of the design and quantity of absence data on the performance of random forest-based landslide susceptibility mapping. CATENA 2019, 176, 45–64. [Google Scholar] [CrossRef]
- Abbaszadeh Shahri, A.; Spross, J.; Johansson, F.; Larsson, S. Landslide susceptibility hazard map in southwest Sweden using artificial neural network. CATENA 2019, 183, 104225. [Google Scholar] [CrossRef]
- Choi, J.; Lee, Y.K.; Lee, M.; Kim, K.; Park, Y.; Kim, S.; Goo, S.; Cho, M.; Sim, J.; Won, J.S.; et al. Landslide Susceptibility Mapping by Using an Adaptive Neuro-fuzzy Inference System (ANFIS). In 2011 IEEE International Geoscience and Remote Sensing Symposium; IEEE: New York, NY, USA, 2011; pp. 1989–1992. [Google Scholar] [CrossRef]
- Oh, H.J.; Pradhan, B. Application of a neuro-fuzzy model to landslide-susceptibility mapping for shallow landslides in a tropical hilly area. Comput. Geosci. 2011, 37, 1264–1276. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Lofman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45, 199–211. [Google Scholar] [CrossRef]
- Chen, W.; Panahi, M.; Tsangaratos, P.; Shahabi, H.; Ilia, I.; Panahi, S.; Li, S.; Jaafari, A.; Ahmad, B.B. Applying population-based evolutionary algorithms and a neuro-fuzzy system for modeling landslide susceptibility. CATENA 2019, 172, 212–231. [Google Scholar] [CrossRef]
- Canavesi, V.; Segoni, S.; Rosi, A.; Ting, X.; Nery, T.; Catani, F.; Casagli, N. Different Approaches to Use Morphometric Attributes in Landslide Susceptibility Mapping Based on Meso-Scale Spatial Units: A Case Study in Rio de Janeiro (Brazil). Remote Sens. 2020, 12, 1826. [Google Scholar] [CrossRef]
- Sameen, M.I.; Pradhan, B.; Lee, S. Application of convolutional neural networks featuring Bayesian optimization for landslide susceptibility assessment. CATENA 2020, 186, 104249. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, Z.; Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 2019, 666, 975–993. [Google Scholar] [CrossRef]
- Yao, W.; Zeng, Z.G.; Lian, C.; Tang, H.M. Pixel-wise regression using U-Net and its application on pansharpening. Neurocomputing 2018, 312, 364–371. [Google Scholar] [CrossRef]
- Liu, P.; We, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef] [Green Version]
- Kassim, Y.M.; Glinskii, O.V.; Glinsky, V.V.; Huxley, V.H.; Guidoboni, G.; Palaniappan, K.; IEEE. Deep Unet Regression and Hand-crafted Feature Fusion for Accurate Blood Vessel Segmentation. In Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, Taiwan, 22–25 September 2019; pp. 1445–1449. [Google Scholar]
- Gui, Y.Y.; Li, X.; Li, W.; Yue, A.Z.; IEEE. Multi-Branch Regression Network For Building Classification Using Remote Sensing Images. In 2018 10th IAPR Workshop on Pattern Recognition in Remote Sensing; IEEE: New York, NY, USA, 2018. [Google Scholar]
- Cao, L.; Li, L.; Zheng, J.F.; Fan, X.; Yin, F.; Shen, H.; Zhang, J. Multi-task neural networks for joint hippocampus segmentation and clinical score regression. Multimed. Tools Appl. 2018, 77, 29669–29686. [Google Scholar] [CrossRef]
- Kamiya, R.; Hotta, K.; Oda, K.; Kakuta, S. Road Detection from Satellite Images by Improving U-Net with Difference of Features. In Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods (ICPRAM), Funchal, Portugal, 16–18 January 2018; pp. 603–607. [Google Scholar] [CrossRef]
- Wang, W.M.; Zhao, L.F.; Li, J.; Yao, Z.X. Rupture process of the Ms 8.0 wenchuan earthquake of Sichuan, China. Chin. J. Geophys. Chin. Ed. 2008, 51, 1403–1410. [Google Scholar]
- Tang, C.; Zhu, J.; Qi, X.; Ding, J. Landslides induced by the Wenchuan earthquake and the subsequent strong rainfall event: A case study in the Beichuan area of China. Eng. Geol. 2011, 122, 22–33. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Tang, H.M.; Jia, H.B.; Hu, X.L.; Li, D.W.; Xiong, C.R. Characteristics of Landslides Induced by the Great Wenchuan Earthquake. J. Earth Sci. 2010, 21, 104–113. [Google Scholar] [CrossRef]
- Mutanga, O.; Kumar, L. Google Earth Engine Applications. Remote Sens. 2019, 11, 591. [Google Scholar] [CrossRef] [Green Version]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Huadong, G. Atlas of Remote Sensing of the Wenchuan Earthquake; Huadong, G., Ed.; CRC Press: Boca Raton, FL, USA, 2009; p. 259. [Google Scholar]
- van Genderen, J.L. Atlas of remote sensing of the Wenchuan earthquake. Int. J. Digit. Earth 2011, 4, 91–92. [Google Scholar] [CrossRef]
- Nepal, N.; Chen, J.; Chen, H.; Wang, X.A.; Pangali Sharma, T.P. Assessment of landslide susceptibility along the Araniko Highway in Poiqu/Bhote Koshi/Sun Koshi Watershed, Nepal Himalaya. Prog. Disaster Sci. 2019, 3, 100037. [Google Scholar] [CrossRef]
- Xiao, L.M.; Zhang, Y.H.; Peng, G.Z. Landslide Susceptibility Assessment Using Integrated Deep Learning Algorithm along the China-Nepal Highway. Sensors 2018, 18, 4436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terzaghi, K. Mechanism of Landslides; Geological Society of America: Boulder, CO, USA, 1950. [Google Scholar] [CrossRef]
- Peng, Z.G.; Gomberg, J. An integrated perspective of the continuum between earthquakes and slow-slip phenomena. Nat. Geosci. 2010, 3, 599–607. [Google Scholar] [CrossRef]
- Theobald, D.M.; Harrison-Atlas, D.; Monahan, W.B.; Albano, C.M. Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE 2015, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, H.; Shafique, M.; Khan, M.A.; Bacha, M.A.; Shah, S.U.; Calligaris, C. Landslide susceptibility assessment using Frequency Ratio, a case study of northern Pakistan. Egypt. J. Remote Sens. Space Sci. 2019, 22, 11–24. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Wald, L.A.; Wald, D.J.; Schwarz, S.; Presgrave, B.; Earle, P.S.; Martinez, E.; Oppenheimer, D. The USGS Earthquake Notification Service (ENS): Customizable notifications of earthquakes around the globe. Seism. Res. Lett. 2008, 79, 103–110. [Google Scholar] [CrossRef]
- Thompson, E.M.; McBride, S.K.; Hayes, G.P.; Allstadt, K.E.; Wald, L.A.; Wald, D.J.; Knudsen, K.L.; Worden, C.B.; Marano, K.D.; Jibson, R.W.; et al. USGS Near-Real-Time Products-and Their Use-for the 2018 Anchorage Earthquake. Seism. Res. Lett. 2020, 91, 94–113. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Handwritten Digit Recognition with a Back-Propagation Network. Adv. Neural Inf. Process. Syst. 1990, 2, 396–404. [Google Scholar]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. Commun. Acm 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.Q.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.; IEEE. Going Deeper with Convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition; IEEE: New York, NY, USA, 2015; pp. 1–9. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-scale Image Recognition. In Proceedings of the International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- He, K.M.; Zhang, X.Y.; Ren, S.Q.; Sun, J.; IEEE. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Ciresan, D.; Giusti, A.; Gambardella, L.M.; Schmidhuber, J. Deep Neural Networks Segment Neuronal Membranes in Electron Microscopy Images. Proceedings of Advances in Neural Information Processing Systems 25 (NIPS 2012), Lake Tahoe, CA, USA, 3–6 December 2012. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Medical Image Computing and Computer-Assisted Intervention, Pt Iii; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; 2015; Volume 9351, pp. 234–241. [Google Scholar]
- Wang, H.; Zhang, L.; Yin, K.; Luo, H.; Li, J. Landslide identification using machine learning. Geosci. Front. 2020. [Google Scholar] [CrossRef]
- Bi, J.; Bennett, K.P. Regression Error Characteristic Curves. Proceedings of 20th International Conference on Machine Learning, Washington, DC, USA, 21–24 August 2003; pp. 43–50. [Google Scholar]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data journals. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Đurić, U.; Marjanović, M.; Radić, Z.; Abolmasov, B. Machine learning based landslide assessment of the Belgrade metropolitan area: Pixel resolution effects and a cross-scaling concept. Eng. Geol. 2019, 256, 23–38. [Google Scholar] [CrossRef]
- Hong, H.; Liu, J.; Zhu, A.X. Modeling landslide susceptibility using LogitBoost alternating decision trees and forest by penalizing attributes with the bagging ensemble. Sci. Total Environ. 2020, 718, 137231. [Google Scholar] [CrossRef] [PubMed]
- Marjanović, M.; Kovačević, M.; Bajat, B.; Voženílek, V. Landslide susceptibility assessment using SVM machine learning algorithm. Eng. Geol. 2011, 123, 225–234. [Google Scholar] [CrossRef]
- Yilmaz, I. Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Comput. Geosci. 2009, 35, 1125–1138. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, R.; Jiang, Y.; Liu, H.; Wei, Z. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, Southeastern China. Eng. Geol. 2019, 259, 105147. [Google Scholar] [CrossRef]
- Pang, B.; Nijkamp, E.; Wu, Y.N. Deep Learning With TensorFlow: A Review. J. Educ. Behav. Stat. 2020, 45, 227–248. [Google Scholar] [CrossRef]
- Luo, L.K.; Peng, H.; Zhang, Q.S.; Lin, C.D.; IEEE. Comparison of strategies for unbalance sample distribution in support vector machine. In Iciea 2006: 1st IEEE Conference on Industrial Electronics and Applications, Vols 1–3, Proceedings; IEEE: New York, NY, USA, 2006; pp. 128–132. [Google Scholar]
- Tanyas, H.; Rossi, M.; Alvioli, M.; van Westen, C.J.; Marchesini, I. A global slope unit-based method for the near real-time prediction of earthquake-induced landslides. Geomorphology 2019, 327, 126–146. [Google Scholar] [CrossRef]
- Jacobs, L.; Kervyn, M.; Reichenbach, P.; Rossi, M.; Marchesini, I.; Alvioli, M.; Dewitte, O. Regional susceptibility assessments with heterogeneous landslide information: Slope unit- vs. pixel-based approach. Geomorphology 2020, 356, 107084. [Google Scholar] [CrossRef]
- Amato, G.; Eisank, C.; Castro-Camilo, D.; Lombardo, L. Accounting for covariate distributions in slope-unit-based landslide susceptibility models. A case study in the alpine environment. Eng. Geol. 2019, 260, 105237. [Google Scholar] [CrossRef]
No | Date | Area (km2) | Landslides (km2) | Objective |
---|---|---|---|---|
1 | 15 May 2008 | 260 | 4.46 | Training/validation |
2 | 15 May 2008 | 344 | 13.2 | Training/validation |
3 | 16 May 2008 | 712 | 6.62 | Training/validation |
4 | 16 May 2008 | 392 | 6.23 | Training/validation |
5 | 16 May 2008 | 156 | 9.60 | Training/validation |
6 | 16 May 2008 | 326 | 16.06 | Training/validation |
7 | 18 May 2008 | 400 | 21.96 | Training/validation |
8 | 28 May 2008 | 137 | 8.57 | Independent testing |
Symbol | Description |
---|---|
γ | Granite, diorite |
δ | Diorite |
ε | Hornblende |
Q | Quaternary. Metamorphic sandstone, limestone |
K | Cretaceous. Conglomerate, sandstone, mudstone |
J | Jurassic. Sandstone, mudstone and their interbeds |
T | Triassic. Sandstone, limestone, slate |
P | Permian. Thick limestone with slate in the middle |
C | Carboniferous. Limestone, marble, sandstone |
D | Devonian. Quartz sandstone |
S | Silurian. Sandstone, phyllite, limestone interbed |
O | Ordovician. Limestone, marble, phyllite |
ψ | Cambrian. Metamorphic grit and limestone |
Z | Sinian. Metamorphic sandstone, limestone |
Layer | Data | Description | Value |
---|---|---|---|
1–7 | Landsat TM data | 7 bands Landsat 5 surface reflectance Tier 1 data obtained from GEE. (https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LT05_C01_T1_SR#description). | Surface reflectance value of each band with scale 10,000. |
8 | DEM | SRTM Digital Elevation Data with 30m/pixel resolution obtained from GEE. (https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003#description). | Value in meters. |
9 | Slope | Computed from DEM data. | Value in degrees. |
10 | Aspect | Computed from DEM data. | Value was clockwise in degrees from 0 (due north) to 360 (again due north), coming full circle. Flat areas are given a value of −1. |
11 | mTPI | Obtained from GEE Global ALOS mTPI. (https://developers.google.com/earth-engine/datasets/catalog/CSP_ERGo_1_0_Global_ALOS_mTPI#description). | Value range from −789 to 678 in the study area according to literature [52]. |
12 | Fault | Extracted from the geological map with the scale 1:200,000. | Euclidean distance to the closest fault. |
13 | Road network | Obtained from the National Geomatics Center of China (NGCC) with the scale 1:50,000. | Euclidean distance to the closest road. |
14 | Stream network | Obtained from the National Geomatics Center of China (NGCC) with the scale 1:50,000. | Euclidean distance to the closest stream. |
15 | MI | Obtained from USGS. | MI value. |
16–29 | Lithology | Extracted from the geological map with the scale 1:200,000, and assigned to14 dummy variables as described in the literature [66]. | Dummy value 0 or 1. |
Precision | Recall | F1 Score | AUC | ||||
---|---|---|---|---|---|---|---|
Training | Validation | Training | Validation | Training | Validation | Training | Validation |
0.83 | 0.77 | 0.92 | 0.90 | 0.87 | 0.83 | 0.95 | 0.90 |
Test Area | Models | True Value | Predict Landslide Susceptibility Value (ls) | Acc | |||||
---|---|---|---|---|---|---|---|---|---|
Positive (Landslide) | Negative (Non-Landslide) | ||||||||
ls ≥ 0.9 | 0.7 ≤ ls < 0.9 | 0.5 ≤ ls < 0.7 | 0.3 ≤ ls < 0.5 | 0.1 ≤ ls < 0.3 | ls < 0.1 | ||||
Test area 1 (20,000 pixels) | U-net | 1 (Positive, Landslide) | 4175 | 3193 | 1169 | 532 | 461 | 470 | 85.46% |
0 (Negative, Non-landslide) | 349 | 584 | 513 | 486 | 790 | 7278 | |||
Logistic | 1 (Positive, Landslide) | 0 | 1742 | 2782 | 3591 | 1839 | 46 | 69.12% | |
0 (Negative, Non-landslide) | 0 | 189 | 512 | 1924 | 5199 | 2176 | |||
SVM | 1 (Positive, Landslide) | 5185 | 1753 | 1034 | 717 | 714 | 597 | 83.30% | |
0 (Negative, Non-landslide) | 495 | 408 | 410 | 650 | 1574 | 6463 | |||
Test area 2 (3000 pixels) | U-net | 1 (Positive, Landslide) | 430 | 348 | 380 | 158 | 113 | 71 | 79.70% |
0 (Negative, Non-landslide) | 10 | 105 | 152 | 120 | 144 | 969 | |||
Logistic | 1 (Positive, Landslide) | 0 | 384 | 1001 | 95 | 9 | 11 | 78.90% | |
0 (Negative, Non-landslide) | 0 | 116 | 402 | 99 | 706 | 177 | |||
SVM | 1 (Positive, Landslide) | 538 | 597 | 212 | 97 | 27 | 29 | 79.20% | |
0 (Negative, Non-landslide) | 157 | 212 | 102 | 65 | 86 | 878 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Wei, Y.; Wang, Q.; Chen, F.; Lu, C.; Lei, S. Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach. Remote Sens. 2020, 12, 2767. https://doi.org/10.3390/rs12172767
Chen Y, Wei Y, Wang Q, Chen F, Lu C, Lei S. Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach. Remote Sensing. 2020; 12(17):2767. https://doi.org/10.3390/rs12172767
Chicago/Turabian StyleChen, Yu, Yongming Wei, Qinjun Wang, Fang Chen, Chunyan Lu, and Shaohua Lei. 2020. "Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach" Remote Sensing 12, no. 17: 2767. https://doi.org/10.3390/rs12172767
APA StyleChen, Y., Wei, Y., Wang, Q., Chen, F., Lu, C., & Lei, S. (2020). Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach. Remote Sensing, 12(17), 2767. https://doi.org/10.3390/rs12172767