Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs
Abstract
:1. Introduction
- (1)
- No spaceborne platforms are delivering low-cost high spatial, temporal, and spectral resolutions at the same time [5].
- (2)
- Atmospheric corrections of orbital images are often less accurate over inland waters than oceanic waters [6].
- (3)
- Visible passive spaceborne sensors are vulnerable to cloud coverage, especially during the rainy season when the water and sediment discharge to lakes and reservoirs is maximum.
2. Materials and Methods
- (1)
- Planning and execution of unmanned airborne surveys with the Sequoia camera over the study areas;
- (2)
- Image processing to generate at-sensor reflectance orthomosaics;
- (3)
- In situ data acquisition concurrently with flights;
- (4)
- Development, statistical analysis, and selection of bio-optical models based on the in situ TSS data and the at-sensor reflectance pixels of orthomosaics;
- (5)
- Application of the most robust model (with the best statistical performance) for the TSS mapping;
- (6)
- TSS mapping accuracy assessment.
2.1. Study Area
2.2. Unmanned Multispectral Platform: Camera, UAV, Flight Planning, and Data Processing
2.2.1. Multispectral Platform
2.2.2. Flight Planning
2.2.3. Multispectral Images Processing
2.3. In Situ Measurements
2.4. TSS Bio-Optical Models
3. Results
3.1. In situ and Airborne Surveys Data
3.2. Bio-Optical Models Assessment and TSS Mapping
4. Discussion
4.1. Radiometric Accuracy
4.2. Reservoir Siltation Mapping
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Palmer, S.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Dörnhöfer, K.; Oppelt, N. Remote sensing for lake research and monitoring–Recent advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Gholizadeh, M.H.; Melesse, A.; Reddi, L.N. A comprehensive review on water quality parameters estimation using remote sensing techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogashawara, I.; Mishra, D.; Gitelson, A.A. Remote sensing of inland waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier B.V.: Amsterdam, the Netherlands, 2017; pp. 1–24. [Google Scholar]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Remote sensing for regional lake water quality assessment: Capabilities and limitations of current and upcoming satellite systems. In Advances in Watershed Science and Assessment; Springer: New York, NY, USA, 2015. [Google Scholar]
- Moses, W.J.; Sterckx, S.; Montes, M.J.; De Keukelaere, L.; Knaeps, E. Atmospheric correction for inland waters. In Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier B.V.: Amsterdam, the Netherlands, 2017; pp. 69–100. [Google Scholar]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2013, 130, 254–265. [Google Scholar] [CrossRef]
- Markelin, L.; Simis, S.; Hunter, P.; Spyrakos, E.; Tyler, A.; Clewley, D.; Groom, S. Atmospheric correction performance of hyperspectral airborne imagery over a small eutrophic lake under changing cloud cover. Remote Sens. 2016, 9, 2. [Google Scholar] [CrossRef] [Green Version]
- Pyo, J.; Ligaray, M.V.; Kwon, Y.; Ahn, M.-H.; Kim, K.; Lee, H.; Kang, T.; Cho, S.B.; Park, Y.; Cho, K.H. High-spatial resolution monitoring of phycocyanin and chlorophyll-a using airborne hyperspectral imagery. Remote Sens. 2018, 10, 1180. [Google Scholar] [CrossRef] [Green Version]
- Aasen, H.; Honkavaara, E.; Lucieer, A.; Zarco-Tejada, P.J. Quantitative remote sensing at ultra-high resolution with UAV spectroscopy: A review of sensor technology, measurement procedures, and data correction workflows. Remote Sens. 2018, 10, 1091. [Google Scholar] [CrossRef] [Green Version]
- Kislik, C.; Dronova, I.; Kelly, M. UAVs in support of algal bloom research: A review of current applications and future opportunities. Drones 2018, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Liu, J.; Zhao, C.; Li, Z.; Huang, Y.; Yu, H.; Xu, B.; Yang, X.; Zhu, D.; Zhang, X.; et al. Unmanned aerial vehicle remote sensing for field-based crop phenotyping: Current status and perspectives. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef]
- Kageyama, Y.; Takahashi, J.; Nishida, M.; Kobori, B.; Nagamoto, D. Analysis of water quality in Miharu dam reservoir, Japan, using UAV data. IEEJ Trans. Electr. Electron. Eng. 2016, 11, S183–S185. [Google Scholar] [CrossRef]
- Su, T.-C.; Chou, H.-T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of tain-pu reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Su, T.-C. A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland waters suspended solids concentration retrieval based on PSO-LSSVM for UAV-borne hyperspectral remote sensing imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Menezes, P.H.B.J.; Roig, H.L.; Almeida, T.; Neto, G.B.S.; Isaias, B. Análise da evolução do padrão de uso e ocupação do solo na bacia de contribuição do lago paranoá—Df evolution analysis og the land use pattern in lago paranoá ’ s watershed—Df. Estud. Geogr. Rev. Eletrôn. Geogr. 2010, 8, 87–105. (In Portuguese) [Google Scholar]
- Almeida, W.S.; Souza, N.M.; Reis Junior, D.S.; Carvalho, J.C. Fluvial morphometric analysis of the contributors watersheds around the reservoir of the hydroeletric power plant (HPP) CORUMBÁ IV as indicators of the erosion and sedimente accumulation process. Rev. Bras. Geomorfol. 2013, 2, 135–149. [Google Scholar]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Padró, J.-C.; Carabassa, V.; Balagué, J.; Brotons, L.; Alcañiz, J.M.; Pons, X. Monitoring opencast mine restorations using Unmanned Aerial System (UAS) imagery. Sci. Total Environ. 2019, 657, 1602–1614. [Google Scholar] [CrossRef]
- Overstreet, B.; Legleiter, C.J. Removing sun glint from optical remote sensing images of shallow rivers. Earth Surf. Process. Landf. 2016, 42, 318–333. [Google Scholar] [CrossRef]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool forgeoscience applications. Geomorphology 2012, 179, 14. [Google Scholar] [CrossRef] [Green Version]
- Radiometric-Corrections. Available online: https://support.pix4d.com/hc/en-us/articles/202559509-Radiometric-corrections (accessed on 2 September 2019).
- Mobley, C.D.; Werdell, J.; Franz, B.; Ahmad, Z.; Bailey, S. Atmospheric Correction for Satellite Ocean Color Radiometry a Tutorial and Documentation of the Algorithms Used by the NASA Ocean Biology Processing Group; NASA Goddard Space Flight Center: Bellevue, WA, USA, 2016.
- Espinoza Villar, R.; Martinez, J.M.; Le Texier, M.; Guyot, J.L.; Fraizy, P.; Meneses, P.R.; de Oliveira, E. A study of sediment transport in the Madeira River, Brazil, using MODIS remote-sensing images. J. South Am. Earth Sci. 2013, 44, 45–54. [Google Scholar] [CrossRef]
- APHA—Association American Public Health. Standard Methods for the Examination of Water and Wastewater; Association American Public Health: New York, NY, USA, 2017. [Google Scholar]
- Ogashawara, I. Terminology and classification of bio-optical algorithms. Remote Sens. Lett. 2015, 6, 613–617. [Google Scholar] [CrossRef]
- Matthews, M. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Odermatt, D.; Gitelson, A.; Brando, V.; Schaepman, M.E. Review of constituent retrieval in optically deep and complex waters from satellite imagery. Remote Sens. Environ. 2012, 118, 116–126. [Google Scholar] [CrossRef] [Green Version]
- Ruddick, K.G.; De Cauwer, V.; Park, Y.-J.; Moore, G. Seaborne measurements of near infrared water-leaving reflectance: The similarity spectrum for turbid waters. Limnol. Oceanogr. 2006, 51, 1167–1179. [Google Scholar] [CrossRef] [Green Version]
- Doxaran, D.; Castaing, P.; Lavender, S. Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data. Int. J. Remote Sens. 2006, 27, 2303–2321. [Google Scholar] [CrossRef]
- Koponen, S.; Attila, J.; Pulliainen, J.; Kallio, K.; Pyhälahti, T.; Lindfors, A.; Rasmus, K.; Hallikainen, M. A case study of airborne and satellite remote sensing of a spring bloom event in the Gulf of Finland. Cont. Shelf Res. 2007, 27, 228–244. [Google Scholar] [CrossRef]
- Nechad, B.; Ruddick, K.G.; Park, Y. Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters. Remote Sens. Environ. 2010, 114, 854–866. [Google Scholar] [CrossRef]
- Svab, E.; Tyler, A.; Preston, T.; Présing, M.; Balogh, K.V. Characterizing the spectral reflectance of algae in lake waters with high suspended sediment concentrations. Int. J. Remote Sens. 2005, 26, 919–928. [Google Scholar] [CrossRef]
- Villar, R.E.; Martinez, J.-M.; Arrmijos, E.; Espinoza, J.-C.; Filizola, N.; Dos Santos, A.; Willems, B.; Fraizy, P.; Santini, W.; Vauchel, P. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000–2014). Comptes Rendus Geosci. 2018, 350, 4–12. [Google Scholar] [CrossRef]
- Martinez, J.-M.; Espinoza-Villar, R.; Arrmijos, E.; Moreira, L.S. The optical properties of river and floodplain waters in the Amazon River Basin: Implications for satellite-based measurements of suspended particulate matter. J. Geophys. Res. Earth Surf. 2015, 120, 1274–1287. [Google Scholar] [CrossRef]
- Ritchie, J.C.; Schiebe, F.R.; McHenry, J.R. Remote sensing of suspended sediments in surface waters. Photogramm. Remote Sens. 1976, 42, 1539–1545. [Google Scholar]
- Kutser, T.; Paavel, B.; Verpoorter, C.; Ligi, M.; Soomets, T.; Toming, K.; Casal, G. Remote sensing of black lakes and using 810 nm reflectance peak for retrieving water quality parameters of optically complex waters. Remote Sens. 2016, 8, 497. [Google Scholar] [CrossRef]
- Kallio, K.; Kutser, T.; Hannonen, T.; Koponen, S.; Pulliainen, J.; Vepsäläinen, J.; Pyhälahti, T. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons. Sci. Total Environ. 2001, 268, 59–77. [Google Scholar] [CrossRef]
- Giardino, C.; Brando, V.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging spectrometry of inland and coastal waters: State of the art, achievements and perspectives. Surv. Geophys. 2018, 40, 401–429. [Google Scholar] [CrossRef] [Green Version]
- Dekker, A.; Vos, R.J.; Peters, S.W.M. Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data. Int. J. Remote Sens. 2002, 23, 15–35. [Google Scholar] [CrossRef]
- Martins, V.S.; Barbosa, C.C.F.; de Carvalho, L.A.S.; Jorge, D.; Lobo, F.D.L.; Novo, E. Assessment of atmospheric correction methods for sentinel-2 MSI images applied to Amazon Floodplain Lakes. Remote Sens. 2017, 9, 322. [Google Scholar] [CrossRef] [Green Version]
- Borges, H.D.; Cicerelli, R.E.; De Almeida, T.; Roig, H.L.; Olivetti, D. Monitoring cyanobacteria occurrence in freshwater reservoirs using semi-analytical algorithms and orbital remote sensing. Mar. Freshw. Res. 2020, 71, 569. [Google Scholar] [CrossRef]
- Da Costa, N.Y.M.; Boaventura, G.R.; Mulholland, D.S.; Araújo, D.F.; Moreira, R.C.A.; Faial, K.C.F.; Bomfim, E.D.O. Biogeochemical mechanisms controlling trophic state and micropollutant concentrations in a tropical artificial lake. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- Sodré, F.F.; Sampaio, T.R. Development and application of a SPE-LC-QTOF method for the quantification of micropollutants of emerging concern in drinking waters from the Brazilian capital. Emerg. Contam. 2020, 6, 72–81. [Google Scholar] [CrossRef]
- Roig, H.L.; Garnier, J.; Ianniruberto, M.; Minoti, R.; Koide, S. Estudo multidisciplinar do estado físico do lago paranoá: Topo-batimetria, qualidade dos sedimentos e balanço hídrico. In Relatório Técnico. Convênio; Universidade de Brasília: Brasília, Brazil, 2019. (In Portuguese) [Google Scholar]
Lens | Bandwidth * | Central Wavelength * | Resolution | Acquisition System |
---|---|---|---|---|
GREEN | 40 nm | 550 nm | 1.2 Mpx | Global Shutter |
RED | 40 nm | 660 nm | 1.2 Mpx | Global Shutter |
RED-EDGE | 10 nm | 735 nm | 1.2 Mpx | Global Shutter |
NIR | 40 nm | 790 nm | 1.2 Mpx | Global Shutter |
RGB | 16 Mpx | Rolling Shutter |
Date in 2018 | Local | θ | Samples | TSS (mg L−1) | ZSD (cm) | ||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | ||||
03/02 | Corumbá | 46° | 5 | 23 | 36.2 | 31.2 | 30 | 37 | 36.2 |
03/29 | Corumbá | 51° | 5 | 5 | 15.6 | 12.6 | 41 | 71 | 47.6 |
05/18 | Corumbá | 67° | 5 | 1 | 2.2 | 1.7 | 215 | 270 | 243 |
09/12 | Paranoá | 55° | 7 | 8.8 | 15.6 | 12 | 40 | 100 | 75.5 |
10/31 | Paranoá | 49° | 4 | 4.4 | 186.8 | 50.8 | 5 | 79 | 57 |
11/02 | Paranoá | 47° | 12 | 2.7 | 43.2 | 12.6 | 13 | 127 | 63.4 |
11/09 | Paranoá | 56° | 1 | 73.2 | 18 | ||||
11/13 | Paranoá | 72° | 1 | 78.8 | 14 | ||||
12/05 | Paranoá | 70° | 1 | 68.2 | 21 |
Model No. | Reference | Algorithm | R2 | RMSE (mg L−1) |
---|---|---|---|---|
1 | This study | TSS: 926.7 * N -28.2 | 0.94 | 7.8 |
2 | This study | TSS: 810.3 * RE-26.1 | 0.90 | 10.3 |
3 | [31] *b | TSS:126.3 * (N/G)-44.3 | 0.80 | 14.6 |
4 | This study | TSS: 484.3 * R-27.2 | 0.66 | 19.0 |
5 | This study | TSS: 80.7 * (R/G)-55.2 | 0.65 | 19.2 |
6 | [32] *c | TSS: 280.3 * (RE/(G+R)-57.7 | 0.51 | 22.6 |
7 | [33] | TSS: (327.8 * R/1-(R/17.1))+1.9 | 0.66 | 24.7 |
8 | [34] *a | TSS:-46.8 * (G/R)+76.6 | 0.34 | 26.2 |
9 | This study | TSS: 675.3 * G-46.2 | 0.25 | 28.1 |
10 | [33] | TSS: (120.8 * G/1-(G/11.2))+3.1 | 0.25 | 31.7 |
11 | [33] | TSS: (1491.5 * RE/1-(RE/19.6))+1.1 | 0.89 | 72.8 |
12 | [33] | TSS: (1701.5 * N/1-(N/20.7))+1.5 | 0.94 | 76.5 |
13 | [35] *d | TSS: 759.1 * (N/R)1.92 | 0.17 | 306.1 |
Model No. | Reference | Algorithm | R2 | RMSE (mg L−1) |
---|---|---|---|---|
1 | This study | TSS: 926.7 * N -28.2 | 0.10 | 14.3 |
2 | This study | TSS: 810.3 * RE-26.1 | 0.48 | 11.7 |
3 | [31] *b | TSS:126.3 * (N/G)-44.3 | 0.82 | 8.1 |
4 | This study | TSS: 484.3 * R-27.2 | 0.10 | 11.7 |
5 | This study | TSS: 80.7 * (R/G)-55.2 | 0.22 | 4.1 |
6 | [32] *c | TSS: 280.3 * (RE/(G+R)-57.7 | 0.80 | 9.5 |
7 | [33] | TSS: (327.8 * R/1-(R/17.1))+1.9 | 0.10 | 11.1 |
8 | [34] *a | TSS:-46.8 * (G/R)+76.6 | 0.25 | 9.5 |
9 | This study | TSS: 675.3 * G-46.2 | 0.10 | 13.1 |
10 | [33] | TSS: (120.8 * G/1-(G/11.2))+3.1 | 0.10 | 2.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivetti, D.; Roig, H.; Martinez, J.-M.; Borges, H.; Ferreira, A.; Casari, R.; Salles, L.; Malta, E. Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sens. 2020, 12, 1855. https://doi.org/10.3390/rs12111855
Olivetti D, Roig H, Martinez J-M, Borges H, Ferreira A, Casari R, Salles L, Malta E. Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sensing. 2020; 12(11):1855. https://doi.org/10.3390/rs12111855
Chicago/Turabian StyleOlivetti, Diogo, Henrique Roig, Jean-Michel Martinez, Henrique Borges, Alexandre Ferreira, Raphael Casari, Leandro Salles, and Edio Malta. 2020. "Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs" Remote Sensing 12, no. 11: 1855. https://doi.org/10.3390/rs12111855
APA StyleOlivetti, D., Roig, H., Martinez, J.-M., Borges, H., Ferreira, A., Casari, R., Salles, L., & Malta, E. (2020). Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sensing, 12(11), 1855. https://doi.org/10.3390/rs12111855