Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Methodology
- ▪
- Data collection. This step covers the selection of remotely sensed and ground truth data. In this study, we selected Landsat-8 and Sentinel-2A images that cover the case study area during 2016. Concerning the data preprocessing, we did not perform any atmospheric correction as we used reflectance at the top of the atmosphere (ToA) to calculate VIs. Crop classification is based on the temporal pattern of VIs and not on its absolute value. Data collection step also comprises collecting the ground truth data from the field visits, which greatly influences the accuracy of the classification procedure.
- ▪
- Data preparation, which consistsofgenerating VIs, combining VIs from different sources of information (Sentinel-2A and Landsat-8, in this case) and performing statistics of the VIs for each ground truth plot. In this case, selected VI was NDVI, because it is the most widespread used VI and very accurate in the monitoring of the crop phenology. To combine NDVI values from different sources (Sentinel-2A and Landsat-8) a comparison of the mean values of NDVI [32] for each plot and each source of information (after removing border effect and other artifacts) was made. Then, Landsat-8 NDVI values were corrected using the obtained linear relationship between both sources of information. To train the classification algorithm, a wide database of ground truth data was acquired, being one of the main strengths of this study. To ensure high quality input data, ground truth was selected to consider plots with more than 1 ha, eliminate border effect (using a buffer of 30 m) and calculating the mean and standard deviation of the VI for each plot. These values represent the pattern of the vegetation in the plot and, therefore, return the information to perform crop classification.
- ▪
- Classification process, which was carried out using field visits during 2016 of 2032 plots for 12 crops. We calibrated and evaluated the performance of 22 nonparametric algorithms.
- ▪
- Quality assessment and selection of the best classification algorithm. With the 30% of the ground truth data, a quality assessment was done based in the generation of the confusion matrix and classical performance indicators of the overall accuracy, producer’s accuracy, user’s accuracy and the F1 score [33]. The evaluation of selection of the best classification algorithm was performed based on these performance indicators.
2.2. The Case Study
2.3. Ground Truth Data
2.4. Remote Sensing Information and Processing
2.5. Analysis of Interoperability between Landsat-8 and Sentinel 2
2.6. Classification Methods
2.7. Evaluation of Classification Accuracy
3. Results
3.1. Evaluation of Classification Methods for Crop Classification
3.2. Selection and Evaluation of the Best Method for Crop Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Murmu, S.; Biswas, S. Application of Fuzzy Logic and Neural Network in Crop Classification: A Review. Aquat. Procedia 2015, 4, 1203–1210. [Google Scholar] [CrossRef]
- Durgun, Y.Ö.; Gobin, A.; Van De Kerchove, R.; Tychon, B. Crop area mapping using 100-m Proba-V time series. Remote Sens. 2016, 8, 585. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Weng, Q. Review article A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Ok, A.O.; Akar, O.; Gungor, O. Evaluation of random forest method for agricultural crop classification. Eur. J. Remote Sens. 2017, 7254. [Google Scholar] [CrossRef]
- Peña, J.M.; Gutiérrez, P.A.; Hervás-Martínez, C.; Six, J.; Plant, R.E.; López-Granados, F. Object-based image classification of summer crops with machine learning methods. Remote Sens. 2014, 6, 5019–5041. [Google Scholar] [CrossRef] [Green Version]
- Raczko, E.; Zagajewski, B. Comparison of support vector machine, random forest and neural network classifiers for tree species classification on airborne hyperspectral APEX images. Eur. J. Remote Sens. 2017, 50, 144–154. [Google Scholar] [CrossRef] [Green Version]
- Atzberger, C.; Rembold, F. Mapping the spatial distribution of winter crops at sub-pixel level using AVHRR NDVI time series and neural nets. Remote Sens. 2013, 5, 1335–1354. [Google Scholar] [CrossRef] [Green Version]
- Warrender, C.E.; Augusteijn, M.F. Fusion of image classifications using bayesian techniques with markov random fields. Int. J. Remote Sens. 1999, 20, 1987–2002. [Google Scholar] [CrossRef]
- Ozdogan, M.; Yang, Y.; Allez, G.; Cervantes, C. Remote Sensing of Irrigated Agriculture: Opportunities and Challenges. Remote Sens. 2010, 2, 2274–2304. [Google Scholar] [CrossRef] [Green Version]
- Schmedtmann, J.; Campagnolo, M.L. Reliable crop identification with satellite imagery in the context of Common Agriculture Policy subsidy control. Remote Sens. 2015, 7, 9325–9346. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, N.M.; Muharam, F.M. The Use of Multi-Temporal Landsat Imageries in Detecting Seasonal Crop Abandonment. Remote Sens. 2015, 7, 11974–11991. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Pringle, M.; Devadas, R.; Denham, R.; Tindall, D. A Framework for Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics. Remote Sens. 2016, 8, 312. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First experience with Sentinel-2 data for crop and tree species classifications in central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Mandanici, E.; Bitelli, G. Preliminary comparison of sentinel-2 and landsat 8 imagery for a combined use. Remote Sens. 2016, 8, 1014. [Google Scholar] [CrossRef] [Green Version]
- Addabbo, P.; Focareta, M.; Marcuccio, S.; Votto, C.; Ullo, S.L. Contribution of Sentinel-2 data for applications in vegetation monitoring. Acta IMEKO 2016, 5, 44–54. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A global analysis of Sentinel-2a, Sentinel-2b and Landsat-8 data revisit intervals and implications for terrestrial monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Roy, D.; Wulder, M.A.; Loveland, T.R.; Woodcock, C.E.; Allen, R.G.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef] [Green Version]
- Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A.; Azar, R.; Villa, P.; Stroppiana, D.; Crema, A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy Assessing in-season crop classification performance. Eur. J. Remote Sens. 2017, 7254. [Google Scholar] [CrossRef] [Green Version]
- Sonobe, R.; Yamaya, Y.; Tani, H.; Wang, X.; Kobayashi, N.; Mochizuki, K. Crop classification from Sentinel-2-derived vegetation indices using ensemble learning. J. Appl. Remote Sens. 2018, 12, 026019. [Google Scholar] [CrossRef] [Green Version]
- Villa, P.; Bresciani, M.; Braga, F.; Bolpagni, R. Comparative assessment of broadband vegetation indices over aquatic vegetation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 3117–3127. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127. [Google Scholar] [CrossRef] [Green Version]
- Sesnie, S.E.; Gessler, P.E.; Finegan, B.; Thessler, S. Integrating Landsat TM and SRTM-DEM derived variables with decision trees for habitat classification and change detection in complex neotropical environments. Remote Sens. Environ. 2008, 112, 2145–2159. [Google Scholar] [CrossRef]
- Achard, F.; Blasco, F. Analysis of vegetation seasonal evolution and mapping of forest cover in West Africa with the use of NOAA AVHRR HRPT data. Photogramm. Eng. Remote Sens. 1990, 56, 1359–1365. [Google Scholar]
- Ustuner, M.; Sanli, F.B.; Dixon, B. Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: Application of Support Vector Machines for Landuse Classification Using High-Resolution RapidEye Images: A Sensitivity Analysis. Eur. J. Remote Sens. 2017, 7254. [Google Scholar] [CrossRef]
- Inglada, J.; Arias, M.; Tardy, B.; Hagolle, O.; Valero, S.; Morin, D.; Dedieu, G.; Sepulcre, G.; Bontemps, S.; Defourny, P.; et al. Assessment of an operational system for crop type map production using high temporal and spatial resolution satellite optical imagery. Remote Sens. 2015, 7, 12356–12379. [Google Scholar] [CrossRef] [Green Version]
- Tatsumi, K.; Yamashiki, Y.; Angel, M.; Torres, C.; Leonidas, C.; Taipe, R. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM + data. Comput. Electron. Agric. 2015, 115, 171–179. [Google Scholar] [CrossRef]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image Analysis-Towards a new paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef] [Green Version]
- Schultz, B.; Immitzer, M.; Formaggio, A.R.; Del, I.; Sanches, A.; José, A.; Luiz, B.; Atzberger, C. Self-Guided Segmentation and Classification of Multi-Temporal Landsat 8 Images for Crop Type Mapping in Southeastern Brazil. Remote Sens. 2015, 7, 14482–14508. [Google Scholar] [CrossRef] [Green Version]
- Heupel, K.; Spengler, D.; Itzerott, S. A Progressive Crop-Type Classification Using Multitemporal Remote Sensing Data and Phenological Information. PFG J. Photogramm. Remote Sens. Geoinf. Sci. 2018, 86, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Del Pozo, S.; González-Aguilera, D.; Moreno, M.A. Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Congalton, R.G. A Review of Assessing the Accuracy of Classification of Remotely Sensed Data A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 4257, 34–46. [Google Scholar]
- Hao, P.; Tang, H.; Chen, Z.; Yu, L.; Wu, M. High resolution crop intensity mapping using harmonized Landsat-8 and Sentinel-2 data. J. Integr. Agric. 2019, 18, 2883–2897. [Google Scholar] [CrossRef]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Kobayashi, N.; Tani, H.; Wang, X.; Sonobe, R. Crop classification using spectral indices derived from Sentinel-2A imagery. J. Inf. Telecommun. 2019, 4, 67–90. [Google Scholar] [CrossRef]
- Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Tychon, B.; Benabdelouahab, T. The Performance of Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an Irrigated Semi-arid Region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [Google Scholar] [CrossRef]
- Nguyen, M.D.; Baez-Villanueva, O.M.; Bui, D.D.; Nguyen, P.T.; Ribbe, L. Harmonization of Landsat and Sentinel 2 for Crop Monitoring in Drought Prone Areas: Case Studies of Ninh Thuan (Vietnam) and Bekaa (Lebanon). Remote Sens. 2020, 12, 281. [Google Scholar] [CrossRef] [Green Version]
- United Nations Environment Programme. UNEP World Atlas of Desertification, 2nd ed.; Wiley: Hoboken, NJ, USA, 1997; p. 182. [Google Scholar]
- Ballesteros, R.; Ortega, J.F.; Moreno, M.Á. FORETo: New software for reference evapotranspiration forecasting. J. Arid Environ. 2016, 124, 128–141. [Google Scholar] [CrossRef]
- De Juan, J.A.; Ortega, J.F.; Tarjuelo, J.M. Sistemas de Cultivo: Evaluación de Itinerarios Técnicos. (Farming Systems: Culture Assessments); Mundi-Prensa Libros: Madrid, Spain, 2003. (In Spanish) [Google Scholar]
- Junta Central de Regantes de la Mancha Oriental. Available online: http://www.jcrmo.org/wp-content/uploads/2018/01/Memoria_2016.pdf (accessed on 10 December 2019).
- Junta Central de Regantes de la Mancha Oriental. Available online: http://www.jcrmo.org/wp-content/uploads/2018/01/MEMORIA_2014_COMPLETA_reducida.pdf (accessed on 10 December 2019).
- Hermosilla, T.; Díaz-Manso, J.M.; Ruiz, L.A.; Recio, J.A.; Fernández-Sarría, A.; Ferradáns-Nogueira, P. Parcel-based image classification as a decision-making supporting tool for the land bank of Galicia (Spain). Core Spat. Databases—Updat. Maint. Serv.—From Theory to Pract. 2010, 38, 42–45. [Google Scholar]
- Eberhardt, I.D.R.; Schultz, B.; Rizzi, R.; Sanches, I.D.A.; Formaggio, A.R.; Atzberger, C.; Mello, M.P.; Immitzer, M.; Trabaquini, K.; Foschiera, W.; et al. Cloud cover assessment for operational crop monitoring systems in tropical areas. Remote Sens. 2016, 8, 219. [Google Scholar] [CrossRef] [Green Version]
- Hao, P.; Wang, L.; Niu, Z.; Aablikim, A.; Huang, N.; Xu, S.; Chen, F. The Potential of Time Series Merged from Landsat-5 TM and HJ-1 CCD for Crop Classification: A Case Study for Bole and Manas Counties in Xinjiang, China. Remote Sens. 2014, 6, 7610–7631. [Google Scholar] [CrossRef] [Green Version]
- Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved Early Crop Type Identification By Joint Use of High Temporal Resolution SAR And Optical Image Time Series. Remote Sens. 2016, 8, 362. [Google Scholar] [CrossRef] [Green Version]
- Eggen, M.; Ozdogan, M.; Zaitchik, B.F.; Simane, B. Land cover classification in complex and fragmented agricultural landscapes of the Ethiopian highlands. Remote Sens. 2016, 8, 1020. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Luo, J.; Wu, T.; Zhou, Y.; Liu, H.; Gao, L.; Dong, W.; Liu, W.; Yang, Y.; Hu, X.; et al. Synchronous Response Analysis of Features for Remote Sensing Crop Classification Based on Optical and SAR Time-Series Data. Sensors 2019, 19, 4227. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sens. Environ. 2020, 239. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Du, P.; Xia, J.; Zhang, W.; Tan, K.; Liu, Y.; Liu, S. Multiple classifier system for remote sensing image classification: A review. Sensors 2012, 12, 4764–4792. [Google Scholar] [CrossRef]
- Chen, Y.; Dou, P.; Yang, X. Improving land use/cover classification with a multiple classifier system using AdaBoost integration technique. Remote Sens. 2017, 9, 1055. [Google Scholar] [CrossRef] [Green Version]
- Choodarathnakara, A.L.; Kumar, D.T.A.; Koliwad, D.S.; Patil, D.C.G. Mixed Pixels: A Challenge in Remote Sensing Data Classification for Improving Performance. Int. J. Adv. Res. Comput. Eng. Technol. 2012, 1, 261–271. [Google Scholar]
- Khatami, R.; Mountrakis, G.; Stehman, S.V. A meta-analysis of remote sensing research on supervised pixel-based land-cover image classification processes: General guidelines for practitioners and future research. Remote Sens. Environ. 2016, 177, 89–100. [Google Scholar] [CrossRef] [Green Version]
- Van Tricht, K.; Gobin, A.; Gilliams, S.; Piccard, I. Synergistic use of radar sentinel-1 and optical sentinel-2 imagery for crop mapping: A case study for Belgium. Remote Sens. 2018, 10, 1642. [Google Scholar] [CrossRef] [Green Version]
- Kussul, N.; Mykola, L.; Shelestov, A.; Skakun, S. Crop inventory at regional scale in Ukraine: Developing in season and end of season crop maps with multi-temporal optical and SAR satellite imagery. Eur. J. Remote Sens. 2018, 51, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Demarez, V.; Helen, F.; Marais-Sicre, C.; Baup, F. In-season mapping of irrigated crops using Landsat 8 and Sentinel-1 time series. Remote Sens. 2019, 11, 118. [Google Scholar] [CrossRef] [Green Version]
- Stendardi, L.; Karlsen, S.R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M.; Notarnicola, C. Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow phenology in mountain regions. Remote Sens. 2019, 11, 542. [Google Scholar] [CrossRef] [Green Version]
Study | Location | Number of Classified Crops | Sensor | Number of Images | Classification Algorithm | Overall Accuracy |
---|---|---|---|---|---|---|
[14] | Austria and Germany | 7 | S2 | 1 | Random Forest | 76% |
[19] | Italy | 7 | L8 | Up to 13 | Maximum likelihood, Euclidean Minimum Distance (EMD) Spectral Angle Mapper (SAM) | 85% up to 92% |
[25] | Turkey | 2 crop 3 stages for each and 6 features | Rapid Eye | 1 | Support Vector Machine | 85.63% |
[26] | 12 test sites (4 Europe, 4 Africa, 2 America 2 Asia) | 4-6 when detailed | SPOT 4 and Landsat-8 | Not detailed | Random forest | 80% |
[27] | Peru | 8 | Landsat 7 ETM+ | 53 | Random forest | 81% |
[5] | Turkey | 5 | SPOT 5 | 1 | Random forest | 85.89% |
[28] | USA | 9 | ASTER | 2 | Neural networks and support vector machines | 88% |
[29] | Brazil | 5 | Landsat-8 | 2 | Random Forest | 80% |
[30] | Germany | 8 | Landsat-7 and -8, Sentinel-2A and RapidEye. | 36 in 2015 47 in 2016 | Fuzzy c-means clustering | 77.19% up to 89.49% |
[31] | Spain | 15 | Landsat-8 and Sentinel 2 | 8761 | Ensemble Bagged Tree | 87% up to 92% |
[6] | USA | 9 | ASTER | 2 | Logistic regression (LR) | 86% |
Crops | Number of Visited Plots |
---|---|
Cereals | |
Barley, C1 | 431 |
Maize, C2 | 246 |
Wheat, C3 | 395 |
Industrial crops | |
Poppy, C7 | 125 |
Sunflower, C8 | 41 |
Deciduous tress | |
Almond tree, C10 | 103 |
Vineyard, C11 | 130 |
Horticultural crops | |
Onion, C4 | 124 |
Purple garlic, C5 | 95 |
White garlic, C6 | 100 |
Perennials (rangegrass) | |
Alfalfa, C9 | 144 |
Legumes | |
Peas, C12 | 98 |
Sentinel-2A * | Landsat-8 | Sentinel-2A * | Landsat-8 | ||||||
---|---|---|---|---|---|---|---|---|---|
Date | R051 | R094 | Path/Row: 199/33 | Path/Row: 200/33 | Date | R051 | R094 | Path/Row: 199/33 | Path/Row: 200/33 |
5-Mar | 3.78 | 1.38 | 18-Jul | 0.04 | |||||
12-Mar | 6.37 | 0.41 | 27-Jul | 2.58 | |||||
25-Mar | 27.15 | 30-Jul | 0.00 | ||||||
1-Apr. | 3.86 | 2-Aug | 0.01 | ||||||
6-Apr | 3-Aug | 0.56 | |||||||
14-Apr. | 0.68 | 9-Aug | 0.00 | ||||||
24-Apr. | 0.00 | 12-Aug | 0.01 | 9.02 | |||||
1-May | 0.00 | 19-Aug | 0.00 | 0.05 | |||||
24-May | 31.97 | 7.21 | 1-Sep | 4.29 | |||||
31-May | 6.47 | 4-Sep | 0.04 | ||||||
9-Jun | 0.80 | 11-Sep | 32.31 | ||||||
13-Jun | 0.01 | 13-Sep | 12.15 | ||||||
20-Jun | 1.84 | 21-Sep | 0.03 | ||||||
25-Jun | 2.44 | 1-Oct | 3.12 | ||||||
2-Jul | 0.07 | 6-Oct | 6.86 | ||||||
3-Jul | 0.62 | 8-Oct | 36.88 | ||||||
10-Jul | 0.02 | 11-Oct | 0.01 | ||||||
11-Jul | 0.67 | 15-Oct | 0.26 |
Data Size | R2 | RMSE | RE |
---|---|---|---|
2934 | 0.998 | 0.05 | 12.18 |
2934 | 0.999 | 0.06 | 11.70 |
2942 | 0.971 | 0.06 | 23.46 |
8810 | 0.996 | 0.06 | 14.30 |
Group | Method | Main Characteristics | |
---|---|---|---|
Decision trees | M1 | Complex tree | Different number of leaves and maximum number of splits (up to 100, 20 and 4 respectively) |
M2 | Medium tree | ||
M3 | Simple tree | ||
Discriminant analysis | M4 | Linear discriminant | Both are parametric methods, with differences in the determination of the boundaries (linear and quadratic respectively) |
M5 | Quadratic discriminant | ||
Support Vector Machines | M6 | Linear SVM | Linear kernel |
M7 | Quadratic SVM | Quadratic kernel | |
M8 | Cubic SVM | Cubic kernel | |
M9 | Fine Gaussian SVM | Gaussian kernel with fine kernel scale (n0.5/4) | |
M10 | Medium Gaussian SVM | Gaussian kernel with medium kernel scale (n0.5) | |
M11 | Coarse Gaussian SVM | Gaussian kernel with coarse kernel scale (n0.5/4) | |
Nearest Neighbor | M12 | Fine KNN | Euclidean distance metric. The number of neighbors is set to 1 |
M13 | Medium KNN | Euclidean distance metric. The number of neighbors is set to 10 | |
M14 | Coarse KNN | Euclidean distance metric. The number of neighbors is set to 100 | |
M15 | Cosine KNN | Cosine distance metric. The number of neighbors is set to 10. | |
M16 | Cubic KNN | Cubic distance metric. The number of neighbors is set to 10. | |
M17 | Weighted KNN | Distance weight. The number of neighbors is set to 10 | |
Ensemble classifiers | M18 | Boosted Trees | AdaBoost ensemble method with decision trees |
M19 | Bagged Trees | Ensemble method with decision trees | |
M20 | Subspace Discriminant | Subspace, with discriminant learners | |
M21 | Subspace KNN | Subspace ensemble method, with nearest neighbor learners | |
M22 | RUSBoost Trees | RUSBoost ensemble method, with decision tree learners |
Decision Trees | Discriminant Analysis | Support Vector Machine | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | |
L8 | 0.74 | 0.69 | 0.55 | 0.69 | 0.77 | 0.80 | 0.85 | 0.85 | 0.78 | 0.83 | 0.71 |
S2 | 0.77 | 0.75 | 0.58 | 0.73 | 0.78 | 0.83 | 0.86 | 0.86 | 0.78 | 0.84 | 0.79 |
L8 and S2 | 0.76 | 0.74 | 0.58 | 0.76 | 0.66 | 0.84 | 0.88 | 0.87 | 0.77 | 0.85 | 0.79 |
L8 and S2 corrected | 0.76 | 0.74 | 0.58 | 0.76 | 0.66 | 0.84 | 0.88 | 0.88 | 0.77 | 0.85 | 0.79 |
Nearest Neighbor Classifiers | Ensemble Classifiers | ||||||||||
M12 | M13 | M14 | M15 | M16 | M17 | M18 | M19 | M20 | M21 | M22 | |
L8 | 0.85 | 0.79 | 0.67 | 0.79 | 0.76 | 0.85 | 0.74 | 0.85 | 0.69 | 0.86 | 0.71 |
S2 | 0.87 | 0.83 | 0.72 | 0.82 | 0.83 | 0.87 | 0.77 | 0.83 | 0.73 | 0.87 | 0.72 |
L8 and S2 | 0.88 | 0.82 | 0.68 | 0.81 | 0.81 | 0.86 | 0.78 | 0.86 | 0.74 | 0.89 | 0.74 |
L8 and S2 corrected | 0.88 | 0.82 | 0.68 | 0.81 | 0.81 | 0.86 | 0.78 | 0.85 | 0.74 | 0.89 | 0.72 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | UA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 107 | 0 | 13 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 82.3 |
C2 | 1 | 71 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 95.9 |
C3 | 14 | 0 | 103 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 86.6 |
C4 | 0 | 0 | 0 | 35 | 2 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 92.1 |
C5 | 0 | 0 | 0 | 0 | 27 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 93.1 |
C6 | 0 | 0 | 0 | 0 | 1 | 28 | 0 | 0 | 1 | 0 | 0 | 0 | 93.3 |
C7 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 100.0 |
C8 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 9 | 0 | 0 | 0 | 0 | 69.2 |
C9 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 41 | 0 | 0 | 0 | 93.2 |
C10 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 30 | 1 | 0 | 96.8 |
C11 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 35 | 0 | 89.7 |
C12 | 7 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 21 | 70.0 |
PA | 81.7 | 98.6 | 86.6 | 85.4 | 87.1 | 84.8 | 97.4 | 90.0 | 97.6 | 93.8 | 94.6 | 75.0 |
C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | C9 | C10 | C11 | C12 | UA | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
C1 | 108 | 0 | 16 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 4 | 82.3 |
C2 | 1 | 71 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 95.9 |
C3 | 12 | 0 | 104 | 0 | 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 86.6 |
C4 | 1 | 0 | 0 | 34 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 92.1 |
C5 | 1 | 0 | 0 | 0 | 25 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 93.1 |
C6 | 0 | 1 | 0 | 0 | 0 | 28 | 0 | 0 | 1 | 0 | 0 | 0 | 93.3 |
C7 | 0 | 0 | 0 | 0 | 0 | 0 | 38 | 0 | 0 | 0 | 0 | 0 | 100.0 |
C8 | 0 | 0 | 0 | 5 | 0 | 0 | 0 | 8 | 0 | 0 | 0 | 0 | 69.2 |
C9 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 41 | 0 | 0 | 0 | 93.2 |
C10 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 28 | 2 | 0 | 96.8 |
C11 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 2 | 34 | 0 | 89.7 |
C12 | 6 | 0 | 2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 20 | 70.0 |
PA | 81.7 | 98.6 | 86.6 | 85.4 | 87.1 | 84.8 | 97.4 | 90.0 | 97.6 | 93.8 | 94.6 | 75.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakhar, A.; Ortega-Terol, D.; Hernández-López, D.; Ballesteros, R.; Ortega, J.F.; Moreno, M.A. Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sens. 2020, 12, 1735. https://doi.org/10.3390/rs12111735
Chakhar A, Ortega-Terol D, Hernández-López D, Ballesteros R, Ortega JF, Moreno MA. Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sensing. 2020; 12(11):1735. https://doi.org/10.3390/rs12111735
Chicago/Turabian StyleChakhar, Amal, Damián Ortega-Terol, David Hernández-López, Rocío Ballesteros, José F. Ortega, and Miguel A. Moreno. 2020. "Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data" Remote Sensing 12, no. 11: 1735. https://doi.org/10.3390/rs12111735
APA StyleChakhar, A., Ortega-Terol, D., Hernández-López, D., Ballesteros, R., Ortega, J. F., & Moreno, M. A. (2020). Assessing the Accuracy of Multiple Classification Algorithms for Crop Classification Using Landsat-8 and Sentinel-2 Data. Remote Sensing, 12(11), 1735. https://doi.org/10.3390/rs12111735