Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. ICESat-2
2.3. SARAL
2.4. ICESat
2.5. Gauge Data
3. Method
3.1. Extracting Water-Level Time Series from ICESat-2
3.1.1. Lake Surface Height Extraction
3.1.2. Measurement Uncertainty in Water Surface Height Extraction
3.2. Extracting Water-Level Time Series from the SARAL and ICESat
3.3. Evaluating the Altimetric Precision of ICESat-2 and SARAL
4. Results and Discussion
4.1. Altimetric Precision of the ICESat-2 Data
4.2. Comparison with the SARAL and ICESat in Lake Coverage and Temporal Frequency
4.3. Comparison with the SARAL and ICESat in Measurement Uncertainty
4.4. Causes of Non-Horizontal LSH Profile for the ICESat-2
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
ID | Name | Latitude (°) | Longitude (°) | Area (km2) | ICESat-2 | SARAL | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MSD (m) | Num | MAE (m) | SD (m) | CC | No Footprint Selection | After Footprint Selection (This Study) | ||||||||||
Num | MAE (m) | MSD (m) | Num | MAE (m) | SD (m) | CC | ||||||||||
1 | Three Gorges | 30.35 | 108.88 | 852 | 0.01 | 10 | −1.35 | 0.40 | 1.00 ** | 34 | 365.96 | 5.11 | 1 | 113.32 | / | / |
2 | Xin‘anjiang | 29.60 | 118.92 | 424 | 0.03 | 2 | 0.64 | 0.03 | 1.00 | 10 | −19.38 | 0.26 | 7 | 0.05 | 2.18 | 0.78 * |
3 | Danjiangkou | 32.68 | 111.35 | 286 | 0.02 | 2 | −1.31 | 0.01 | 1.00 | 8 | 43.83 | 0.34 | 5 | -2.09 | 1.64 | 0.95 ** |
4 | Longyangxia | 36.03 | 100.71 | 285 | 0.02 | 3 | −0.35 | 0.27 | 1.00 * | 7 | 0.39 | 0.09 | 7 | 0.36 | 0.24 | 0.99 ** |
5 | Xinfengjiang | 23.90 | 114.53 | 264 | 0.02 | 2 | 0.77 | 0.00 | 1.00 | 7 | 74.36 | 0.27 | 4 | 0.63 | 0.21 | 0.99 ** |
6 | Fengman | 43.46 | 126.96 | 194 | 0.02 | 6 | 1.16 | 1.32 | 0.43 | 7 | 33.40 | 0.15 | 4 | 12.62 | 20.87 | −0.83 |
7 | Miyun | 40.51 | 116.93 | 122 | 0.01 | 3 | −1.04 | 0.03 | 0.73 | 4 | 22.29 | 0.37 | 2 | −2.02 | 2.24 | −1.00 |
8 | Yuqiao | 40.04 | 117.59 | 119 | 0.03 | 2 | −1.10 | 0.05 | −1.00 | 4 | −23.37 | 0.22 | 2 | 1.29 | 1.83 | −1.00 |
9 | Erlongshan | 43.20 | 124.86 | 98 | 0.03 | 3 | 0.13 | 0.01 | 0.94 | 2 | 0.66 | 0.17 | 2 | 0.66 | 0.25 | 1.00 |
10 | Guanting | 40.35 | 115.73 | 90 | 0.02 | 3 | −1.16 | 0.03 | 0.99 | 3 | 31.15 | 0.20 | 2 | −0.48 | 0.25 | 1.00 |
11 | Baishan | 42.54 | 127.35 | 85 | 0.02 | 7 | 0.11 | 0.08 | 1.00 * | 5 | 44.41 | 0.16 | 4 | 0.53 | 0.43 | 0.89 |
12 | Xiaolangdi | 34.99 | 112.07 | 62 | 0.02 | 1 | 0.13 | / | / | 4 | 106.33 | / | / | / | / | / |
13 | Ankang | 32.54 | 108.68 | 57 | 0.02 | 2 | −1.61 | 0.12 | 1.00 | 1 | 168.07 | / | / | / | / | / |
14 | Hedi | 21.80 | 110.33 | 52 | 0.02 | 1 | 0.84 | / | / | 3 | 1.79 | 0.19 | 3 | 1.79 | 0.28 | 1.00 *° |
15 | Dahuofang | 41.88 | 124.21 | 51 | 0.01 | 4 | 0.27 | 0.02 | 1.00 ** | 5 | 16.62 | 0.25 | 4 | 9.90 | 20.90 | 0.39 |
16 | Cetian | 39.92 | 113.64 | 47 | 0.01 | 4 | −1.20 | 0.08 | 1.00 ** | 3 | 76.10 | / | / | / | / | / |
17 | Geheyan | 30.42 | 110.89 | 41 | 0.01 | 4 | −1.53 | 0.15 | 1.00 ** | 2 | 173.65 | / | / | / | / | / |
18 | Gangnan | 38.34 | 113.93 | 39 | 0.02 | 2 | −1.14 | 0.03 | 1.00 | 5 | 33.14 | 0.39 | 2 | −0.70 | 0.08 | 1.00 |
19 | Shilianghe | 34.78 | 118.81 | 39 | 0.01 | 3 | 0.07 | 0.12 | −0.97 | 2 | 0.58 | 0.17 | 1 | 0.80 | / | / |
20 | Qinghe | 42.54 | 124.29 | 37 | 0.02 | 2 | 0.14 | 0.02 | / | 3 | 24.92 | 0.31 | 2 | 19.71 | 26.97 | −1.00 |
21 | Wangkuai | 38.77 | 114.42 | 34 | 0.01 | 2 | −1.33 | 0.01 | 1.00 | / | / | / | / | / | / | / |
22 | Biliuhe | 39.87 | 122.49 | 32 | 0.02 | 2 | 0.17 | 0.01 | 1.00 | / | / | / | / | / | / | / |
23 | Andi | 35.69 | 118.08 | 26 | 0.02 | 2 | 0.21 | 0.03 | 1.00 | / | / | / | / | / | / | / |
24 | Meishan | 31.60 | 115.82 | 25 | 0.02 | 2 | −0.58 | 0.06 | 1.00 | 1 | 121.78 | / | / | / | / | / |
25 | Fenhe | 38.09 | 111.88 | 21 | 0.01 | 1 | 2.12 | / | / | 1 | −134.21 | / | / | / | / | / |
26 | Xiajiasi | 31.09 | 114.48 | 18 | 0.01 | 2 | 0.23 | 0.01 | 1.00 | 1 | 4.95 | 0.16 | 1 | 4.95 | / | / |
27 | Dongfanghong | 47.66 | 127.16 | 17 | 0.01 | 2 | 0.44 | 0.06 | 1.00 | / | / | / | / | / | / | / |
28 | Huangshi | 29.23 | 111.14 | 16 | 0.02 | 2 | −1.48 | 0.01 | 1.00 | 1 | −0.58 | 0.07 | 1 | −0.58 | / | / |
29 | Qiangkuang | 35.86 | 119.15 | 14 | 0.02 | 2 | 0.32 | 0.01 | 1.00 | 1 | 1.20 | 0.13 | 1 | 1.20 | / | / |
30 | Dongwushi | 36.41 | 114.28 | 12 | 0.01 | 2 | 0.30 | 0.02 | 1.00 | 1 | 94.52 | / | / | / | / | / |
References
- Robertson, D.M.; Ragotzkie, R.A. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquat. Sci. 1990, 52, 360–380. [Google Scholar] [CrossRef]
- De Wit, M.; Stankiewicz, J. Changes in Surface Water Supply Across Africa with Predicted Climate Change. Science 2006, 311, 1917–1921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorosmarty, C.J. Global Water Resources: Vulnerability from Climate Change and Population Growth. Science 2000, 289, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.E.; Lettenmaier, D.P. Tracking Fresh Water from Space. Science 2003, 301, 1491–1494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crétaux, J.F.; Abarca-del-Río, R.; Bergé-Nguyen, M.; Arsen, A.; Drolon, V.; Clos, G.; Maisongrande, P. Lake Volume Monitoring from Space. Surv. Geophys. 2016, 37, 269–305. [Google Scholar] [CrossRef] [Green Version]
- Alsdorf, D.E.; Rodríguez, E.; Lettenmaier, D.P. Measuring surface water from space. Revi. Geophys. 2007, 45. [Google Scholar] [CrossRef]
- Van Den Hoek, J.; Getirana, A.; Jung, H.C.; Okeowo, M.A.; Lee, H. Monitoring Reservoir Drought Dynamics with Landsat and Radar/Lidar Altimetry Time Series in Persistently Cloudy Eastern Brazil. Remote Sens. 2019, 11, 827. [Google Scholar] [CrossRef] [Green Version]
- Yu, C. Chinas water crisis needs more than words. Nature 2011, 470, 307. [Google Scholar] [CrossRef]
- Vorosmarty, C.; Askew, A.; Grabs, W.; Barry, R.G.; Birkett, C.; Doll, P.; Goodison, B.; Hall, A.; Jenne, R.; Kitaev, L.; et al. Global water data: A newly endangered species. Eos Trans. Am. Geophys. Union 2001, 82, 54. [Google Scholar] [CrossRef]
- Birkett, C.M. The contribution of TOPEX/POSEIDON to the global monitoring of climatically sensitive lakes. J. Geophys. Res. 1995, 100, 25179. [Google Scholar] [CrossRef]
- Crétaux, J.-F.; Birkett, C. Lake studies from satellite radar altimetry. C R. Geosci. 2006, 338, 1098–1112. [Google Scholar] [CrossRef]
- Crétaux, J.F.; Jelinski, W.; Calmant, S.; Kouraev, A.; Vuglinski, V.; Bergé-Nguyen, M.; Gennero, M.C.; Nino, F.; Abarca Del Rio, R.; Cazenave, A.; et al. SOLS: A lake database to monitor in the Near Real Time water level and storage variations from remote sensing data. Adv. Space Res. 2011, 47, 149–1507. [Google Scholar] [CrossRef]
- Schwatke, C.; Dettmering, D.; Bosch, W.; Seitz, F. DAHITI—an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrol. Earth Syst. Sci. 2015, 19, 4345–4364. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Wang, X.; Gong, P.; Zhao, Y.; Xu, Y.; Cheng, X.; Niu, Z.; Luo, Z.; Huang, H.; Sun, F.; Li, X. Water-level changes in Chinas large lakes determined from ICESat/GLAS data. Remote Sens. Environ. 2013, 132, 131–144. [Google Scholar] [CrossRef]
- Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D.; et al. The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation. Remote Sens. Environ. 2017, 190, 260–273. [Google Scholar] [CrossRef]
- Zhang, G.; Chen, W.; Xie, H. Tibetan Plateaus Lake Level and Volume Changes From NASAs ICESat/ICESat-2 and Landsat Missions. Geophys. Res. Lett. 2019, 46, 13107–13118. [Google Scholar] [CrossRef]
- Yuan, C.; Gong, P.; Liu, C.; Ke, C. Water-volume variations of Lake Hulun estimated from serial Jason altimeters and Landsat TM/ETM+ images from 2002 to 2017. Int. J. Remote Sens. 2018, 40, 670–692. [Google Scholar] [CrossRef]
- Jiang, L.; Andersen, O.B.; Nielsen, K.; Zhang, G.; Bauer-Gottwein, P. Influence of local geoid variation on water surface elevation estimates derived from multi-mission altimetry for Lake Namco. Remote Sens. Environ. 2019, 221, 65–79. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Lindenbergh, R.C.; Ditmar, P.G. Monitoring of lake level changes on the Tibetan Plateau and Tian Shan by retracking Cryosat SARIn waveforms. J. Hydrol. 2015, 521, 119–131. [Google Scholar] [CrossRef]
- Phan, V.H.; Lindenbergh, R.; Menenti, M. ICESat derived elevation changes of Tibetan lakes between 2003 and 2009. Int. J. Appl. Earth Observ. Geoinfor. 2012, 17, 12–22. [Google Scholar] [CrossRef]
- Kleinherenbrink, M.; Ditmar, P.G.; Lindenbergh, R.C. Retracking Cryosat data in the SARIn mode and robust lake level extraction. Remote Sens. Environ. 2014, 152, 38–50. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.; Duan, H.; Hu, C.; Feng, X.; Li, A.; Ju, W.; Jiang, J.; Yang, G. A half-century of changes in China’s lakes: Global warming or human influence? Geophys. Res. Lett. 2010, 37. [Google Scholar] [CrossRef]
- Jasinski, M.F.; Stoll, J.D.; Hancock, D.; Robbins, J.; Nattala, J.; Pavelsky, T.M.; Morison, J.; Arp, C.D.; Jones, B.M. The ICESat-2 Science Team. ATLAS/ICESat-2 L3A Inland Water Surface Height, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
- Bonnefond, P.; Verron, J.; Aublanc, J.; Babu, K.; Bergé-Nguyen, M.; Cancet, M.; Chaudhary, A.; Crétaux, J.-F.; Frappart, F.; Haines, B.; et al. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Quality Assessment and Unique Characteristics of AltiKa Data. Remote Sens. 2018, 10, 83. [Google Scholar] [CrossRef] [Green Version]
- Verron, J.; Bonnefond, P.; Aouf, L.; Birol, F.; Bhowmick, S.; Calmant, S.; Conchy, T.; Crétaux, J.-F.; Dibarboure, G.; Dubey, A.; et al. The Benefits of the Ka-Band as Evidenced from the SARAL/AltiKa Altimetric Mission: Scientific Applications. Remote Sens. 2018, 10, 163. [Google Scholar] [CrossRef] [Green Version]
- Kao, H.-C.; Kuo, C.-Y.; Tseng, K.-H.; Shum, C.K.; Tseng, T.-P.; Jia, Y.-Y.; Yang, T.-Y.; Ali, T.A.; Yi, Y.; Hussain, D. Assessment of Cryosat-2 and SARAL/AltiKa altimetry for measuring inland water and coastal sea level variations: A case study on Tibetan Plateau lake and Taiwan Coast. Mar. Geod. 2019, 1–17. [Google Scholar] [CrossRef]
- Arsen, A.; Crétaux, J.-F.; Abarca del Rio, R. Use of SARAL/AltiKa over Mountainous Lakes, Intercomparison with Envisat Mission. Mar. Geod. 2015, 38, 534–548. [Google Scholar] [CrossRef]
- OLoughlin, F.E.; Neal, J.; Yamazaki, D.; Bates, P.D. ICESat-derived inland water surface spot heights. Water Resour. Res. 2016, 52, 3276–3284. [Google Scholar] [CrossRef] [Green Version]
- Loughlin, F.O.; Bates, P.D.; Neal, J.C.; Yamazaki, D. ICESat Derived Inland Water Surface Spot Heights (IWSH). 2015. Available online: https://doi.org/10.5523/bris.15hbqgewcrti51hmzp69bi4gky (accessed on 2 December 2019).
- Jain, M.; Andersen, O.B.; Dall, J.; Stenseng, L. Sea surface height determination in the Arctic using Cryosat-2 SAR data from primary peak empirical retrackers. Adv. Space Res. 2015, 55, 40–50. [Google Scholar] [CrossRef]
- Jiang, L.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. J. Hydrol. 2017, 544, 109–124. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Nielsen, K.; Andersen, O.B.; Bauer-Gottwein, P. CryoSat-2 radar altimetry for monitoring freshwater resources of China. Remote Sens. Environ. 2017, 200, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Dibarboure, G.; Lamy, A.; Pujol, M.-I.; Jettou, G. The Drifting Phase of SARAL: Securing Stable Ocean Mesoscale Sampling with an Unmaintained Decaying Altitude. Remote Sens. 2018, 10, 1051. [Google Scholar] [CrossRef] [Green Version]
- Sjöberg, L.E.; Bagherbandi, M. Quasigeoid-to-geoid determination by EGM08. Earth Sci. Inform. 2012, 5, 87–91. [Google Scholar] [CrossRef]
- Okeowo, M.A.; Lee, H.; Hossain, F.; Getirana, A. Automated Generation of Lakes and Reservoirs Water Elevation Changes From Satellite Radar Altimetry. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 3465–3481. [Google Scholar] [CrossRef]
- Dubey, A.K.; Gupta, P.K.; Dutta, S.; Singh, R.P. An improved methodology to estimate river stage and discharge using Jason-2 satellite data. J. Hydrol. 2015, 529, 1776–1787. [Google Scholar] [CrossRef]
- Kouraev, A.V.; Kostianoy, A.G.; Lebedev, S.A. Ice cover and sea level of the Aral Sea from satellite altimetry and radiometry (1992–2006). J. Mar. Syst. 2009, 76, 272–286. [Google Scholar] [CrossRef]
- Kouraev, A.; Semovski, S.; Shimaraev, M.; Mognard, N.; Legresy, B.; Remy, F. Observations of Lake Baikal ice from satellite altimetry and radiometry. Remote Sens. Environ. 2007, 108, 240–253. [Google Scholar] [CrossRef]
Mission | ICESat-2 | SARAL | ICESat |
---|---|---|---|
Agency | National Aeronautics and Space Administraion (NASA) | Centre National d’Etudes Spatiales (CNES), Indian Space Research Organization (ISRO) | NASA |
Instrument | Advanced Topographic Laser Altimeter System (ATLAS) | AltiKa | Geoscience Laser Altimeter System (GLAS) |
Band, wavelength | Green, 532 nm | Ka, 8 mm | Infrared, 1064 nm; Green, 532 nm |
Operation time | 2018. 09~present | 2013. 02~present | 2003. 01~2009. 10 |
Orbit altitude (km) | 500 | 800 | 600 |
Inclination angle (°) | 92 | 98.55 | 94 |
Repeat cycle (day) | 91 | 35 | 183, 91 |
Beam number | Six beams (3 pairs) | Single beam | Single beam |
Footprint diameter (m) | ~17 | ~1400 | ~72 |
Sampling interval (m) | ~0.7 | ~170 | ~172 |
Satellite | Time Period | Number of Observed Lakes | Annual Observation Frequency | MMSD (m) |
---|---|---|---|---|
ICESat-2 | 2018.10–2019.05 | 636 | 3.43 | 0.02 |
SARAL (Repeat Phase, Drifting Phase) | 2013.03–2019.10 (before 2016.07, after 2016.07) | 814 (479, 802) | 1.35 (2.63, 1.85) | 0.17 (0.13, 0.15) |
ICESat | 2003.02–2009.10 | 311 | 1.48 | 0.07 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, C.; Gong, P.; Bai, Y. Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sens. 2020, 12, 770. https://doi.org/10.3390/rs12050770
Yuan C, Gong P, Bai Y. Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sensing. 2020; 12(5):770. https://doi.org/10.3390/rs12050770
Chicago/Turabian StyleYuan, Cui, Peng Gong, and Yuqi Bai. 2020. "Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China" Remote Sensing 12, no. 5: 770. https://doi.org/10.3390/rs12050770
APA StyleYuan, C., Gong, P., & Bai, Y. (2020). Performance Assessment of ICESat-2 Laser Altimeter Data for Water-Level Measurement over Lakes and Reservoirs in China. Remote Sensing, 12(5), 770. https://doi.org/10.3390/rs12050770