Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data
Abstract
:1. Introduction
- (1)
- Analysis of the trends of LUCC and carbon storage in the QLB from 1990 to 2015.
- (2)
- Simulation of land-use changes and carbon storage over 2020–2030 under different scenarios using an ANN–CA model.
2. Materials and Methods
2.1. Study Area and Data
2.2. Methods
2.2.1. Land Development Scenarios
2.2.2. CA-Based FLUS Model
2.2.3. Variable Importance Measures
2.2.4. Estimation of Carbon Storage based on the InVEST Model
3. Results
3.1. Importance of Driving Factors for each LUC Type in the Model
3.2. Simulation Model Validation
3.3. Land Use and Land Cover Change over 1990–2030
3.4. Temporal Patterns of Carbon Storage
3.4.1. Total Carbon storage and Potential Regional Carbon Losses
3.4.2. Spatial patters of Future Carbon Storage
4. Discussion
4.1. Analysis of Land Use and Cover Change
4.2. Measurement of Carbon Storage in the QLB
4.3. Generality of Models
4.4. Limitations and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodríguez-Echeverry, J.; Echeverría, C.; Oyarzún, C.; Morales, L.J.L.E. Impact of land-use change on biodiversity and ecosystem services in the Chilean temperate forests. Landsc. Ecol. 2018, 33, 439–453. [Google Scholar] [CrossRef]
- Li, S.C.; Zhang, Y.L.; Wang, Z.F.; Li, L.H. Mapping human influence intensity in the Tibetan Plateau for conservation of ecological service functions. Ecosyst. Serv. 2018, 30, 276–286. [Google Scholar] [CrossRef]
- Feddema, J.J.; Oleson, K.W.; Bonan, G.B.; Mearns, L.O.; Buja, L.E.; Meehl, G.A.; Washington, W.M. The Importance of Land-Cover Change in Simulating Future Climates. Science 2005, 310, 1674–1678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, T.; Hudson, L.N.; Hill, S.L.L.; Contu, S.; Lysenko, I.; Senior, R.A.; Börger, L.; Bennett, D.J.; Choimes, A.; Collen, B.J.N. Global effects of land use on local terrestrial biodiversity. Nature 2015, 520, 45–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Bing, Z.; Jin, G. Spatially Explicit Mapping of Soil Conservation Service in Monetary Units Due to Land Use/Cover Change for the Three Gorges Reservoir Area, China. Remote Sens. 2019, 11, 468. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Crane, D.E. Carbon storage and sequestration by urban trees in the USA. Environ. Pollut. 2002, 116, 381–389. [Google Scholar] [CrossRef]
- Rabbi, S.M.F.; Tighe, M.; Delgado-Baquerizo, M.; Cowie, A.; Robertson, F.; Dalal, R.; Page, K.; Crawford, D.; Wilson, B.R.; Schwenke, G.; et al. Climate and soil properties limit the positive effects of land use reversion on carbon storage in Eastern Australia. Sci. Rep. 2015, 5, 17866. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Yu, G.R.; He, N.P.; Wang, Q.F.; Gao, Y.; Wen, D.; Li, S.G.; Niu, S.L.; Ge, J.P. Carbon storage in China’s terrestrial ecosystems: A synthesis. Sci. Rep. 2018, 8, 2806. [Google Scholar] [CrossRef]
- Zhang, C.H.; Ju, W.M.; Chen, J.M.; Wang, X.Q.; Yang, L.; Zheng, G. Disturbance-induced reduction of biomass carbon sinks of China’s forests in recent years. Environ. Res. Lett. 2015, 10, 114021. [Google Scholar] [CrossRef]
- Seto, K.C.; Güneralp, B.; Hutyra, L.R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl. Acad. Sci. USA 2012, 109, 16083–16088. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.Q.; Liu, S.G.; Sohl, T.; Young, C.; Werner, J. Land use and carbon dynamics in the southeastern United States from 1992 to 2050. Environ. Res. Lett. 2013, 8, 575–591. [Google Scholar] [CrossRef] [Green Version]
- Fu, Y.C.; Lu, X.Y.; Zhao, Y.L.; Zeng, X.T.; Xia, L.L. Assessment Impacts of Weather and Land Use/Land Cover (LULC) Change on Urban Vegetation Net Primary Productivity (NPP): A Case Study in Guangzhou, China. Remote Sens. 2013, 5, 4125. [Google Scholar] [CrossRef] [Green Version]
- Le Quéré, C.; Peters, G.P.; Andres, R.J.; Andrew, R.M.; Boden, T.A.; Ciais, P.; Friedlingstein, P.; Houghton, R.A.; Marland, G.; Moriarty, R. Global carbon budget 2013. Earth Syst. Sci. Data 2015, 7, 521–610. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Y.; Chen, A.P.; Peng, C.H.; Zhao, S.Q.; Ci, L.J. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Sohl, T.L.; Sleeter, B.M.; Zhu, Z.; Sayler, K.L.; Bennett, S.; Bouchard, M.; Reker, R.; Hawbaker, T.; Wein, A.; Liu, S.; et al. A land-use and land-cover modeling strategy to support a national assessment of carbon stocks and fluxes. Appl. Geogr. 2012, 34, 111–124. [Google Scholar] [CrossRef]
- Tao, Y.; Li, F.; Liu, X.S.; Zhao, D.; Sun, X.; Xu, L.F. Variation in ecosystem services across an urbanization gradient: A study of terrestrial carbon stocks from Changzhou, China. Ecol. Mod. 2015, 318, 210–216. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, C.; Hu, Y.F.; Kuang, W.H. Urban Land-Cover Change and Its Impact on the Ecosystem Carbon Storage in a Dryland City. Remote Sens. 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Steger, K.; Fiener, P.; Marvin-DiPasquale, M.; Viers, J.H.; Smart, D.R. Human-induced and natural carbon storage in floodplains of the Central Valley of California. Sci. Total Environ. 2019, 651, 851–858. [Google Scholar] [CrossRef]
- Zhang, C.; Tian, H.; Chen, G.; Chappelka, A.; Xu, X.; Ren, W.; Hui, D.; Liu, M.; Lu, C.; Pan, S.; et al. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environ. Pollut. 2012, 164, 89–101. [Google Scholar] [CrossRef]
- Leh, M.D.K.; Matlock, M.D.; Cummings, E.C.; Nalley, L.L. Quantifying and mapping multiple ecosystem services change in West Africa. Agric. Ecosyst. Environ. 2013, 165, 6–18. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E. VEST Version 3.2. 0 User’s Guide; The Natural Capital Project. The Nature Conservancy, and World Wildlife Fund; Stanford University: Stanford, CA, USA; University of Minnesota: Minneapolis, MN, USA, 2015. [Google Scholar]
- Rogers, K.; Kelleway, J.J.; Saintilan, N.; Megonigal, J.P.; Adams, J.B.; Holmquist, J.R.; Lu, M.; Schile-Beers, L.; Zawadzki, A.; Mazumder, D.; et al. Wetland carbon storage controlled by millennial-scale variation in relative sea-level rise. Nature 2019, 567, 91–95. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Zhan, J.Y.; Zhang, Q.; Yao, L.; Liu, W. Impacts of land use/cover change on terrestrial carbon stocks in Uganda. Phys. Chem. Earth Parts A/B/C 2017, 101, 195–203. [Google Scholar] [CrossRef]
- Schulz, K.; Guschal, M.; Kowarik, I.; Almeida-Cortez, J.S.; Sampaio, E.V.; Cierjacks, A. Grazing, forest density, and carbon storage: Towards a more sustainable land use in Caatinga dry forests of Brazil. Reg. Environ. Chang. 2018, 18, 1969–1981. [Google Scholar] [CrossRef]
- Aryal, D.R.; Castro, H.G.; del Carmen García, N.; Ruiz, O.D.J.J.; Paniagua, L.F.M.; Trujillo, J.A.J.; Venegas, J.A.V.; Ruiz, R.P.; de Coss, A.L.; Hernández, F.G. Carbon storage potential in forest areas within a livestock system. Revista Mexicana Ciencias Forestales 2018, 9, 48. [Google Scholar]
- Auerswald, K.; Fiener, P. Soil organic carbon storage following conversion from cropland to grassland on sites differing in soil drainage and erosion history. Sci. Total Environ. 2019, 661, 481–491. [Google Scholar] [CrossRef]
- Bortolon, E.S.O.; Mielniczuk, J.; Tornquist, C.G.; Lopes, F.; Bergamaschi, H. Validation of the Century model to estimate the impact of agriculture on soil organic carbon in Southern Brazil. Geoderma 2011, 167–168, 156–166. [Google Scholar] [CrossRef]
- Gomes, L.C.; Faria, R.M.; de Souza, E.; Veloso, G.V.; Schaefer, C.E.G.R.; Filho, E.I.F. Modelling and mapping soil organic carbon stocks in Brazil. Geoderma 2019, 340, 337–350. [Google Scholar] [CrossRef]
- Wang, B.; Waters, C.; Orgill, S.; Gray, J.; Cowie, A.; Clark, A.; Liu, D.L. High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Sci. Total Environ. 2018, 630, 367–378. [Google Scholar] [CrossRef]
- Minasny, B.; Setiawan, B.I.; Saptomo, S.K.; McBratney, A.B. Open digital mapping as a cost-effective method for mapping peat thickness and assessing the carbon stock of tropical peatlands. Geoderma 2018, 313, 25–40. [Google Scholar] [CrossRef]
- Lu, F.; Hu, H.; Sun, W.; Zhu, J.; Liu, G.; Zhou, W.; Zhang, Q.; Shi, P.; Liu, X.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.Y.; Guo, Z.D.; Hu, H.F.; Kato, T.; Muraoka, H.; Son, Y. Forest biomass carbon sinks in East Asia, with special reference to the relative contributions of forest expansion and forest growth. Glob. Chang. Biol. 2014, 20, 2019–2030. [Google Scholar] [CrossRef] [PubMed]
- Almeida, C.M.; Gleriani, J.M.; Castejon, E.F.; Soares-Filho, B.S. Using neural networks and cellular automata for modelling intra-urban land-use dynamics. Int. J. Geogr. Inf. Syst. 2008, 22, 943–963. [Google Scholar] [CrossRef]
- Xia, L.I.; Gar-On, Y.A. Neural-network-based Cellular Automata for Realistic and Idealized Urban Simulation. Acta Geogr. Sin. 2002, 57, 159–166. [Google Scholar]
- Gong, J.; Li, J.Y.; Yang, J.X.; Li, S.C.; Tang, W.W. Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services. Int. J. Environ. Res. Public Health 2017, 14, 818. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.-Y.; Li, X.-Y.; Zhao, G.-Q.; Huang, Y.-M. Surface energy fluxes and controls of evapotranspiration in three alpine ecosystems of Qinghai Lake watershed, NE Qinghai-Tibet Plateau. Ecohydrology 2016, 9, 267–279. [Google Scholar] [CrossRef]
- Government, Q.P. The Planning of the Main Functional Area of Qinghai Province Was Officially Released. Available online: http://www.gov.cn/xinwen/content_2660999.htm (accessed on 17 April 2014).
- Xin, H. A Green Fervor Sweeps the Qinghai-Tibetan Plateau. Science 2008, 321, 633–635. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Bao, Y. Research on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 81–87. [Google Scholar]
- Liu, X.P.; Liang, X.; Li, X.; Xu, X.C.; Ou, J.P.; Chen, Y.M.; Li, S.Y.; Wang, S.J.; Pei, F.S. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Liang, X.; Liu, X.; Li, X.; Chen, Y.; Tian, H.; Yao, Y. Delineating multi-scenario urban growth boundaries with a CA-based FLUS model and morphological method. Landsc. Urban Plan. 2018, 177, 47–63. [Google Scholar] [CrossRef]
- Xia, L.; Gar-Onyeh, A. Modelling sustainable urban development by the integration of constrained cellular automata and GIS. Int. J. Geogr. Inf. Syst. 2000, 14, 131–152. [Google Scholar]
- Liang, X.; Liu, X.; Li, D.; Zhao, H.; Chen, G. Urban growth simulation by incorporating planning policies into a CA-based future land-use simulation model. Int. J. Geogr. Inf. Syst. 2018, 32, 2294–2316. [Google Scholar] [CrossRef]
- Guan, Q.F.; Clarke, K.C. A general-purpose parallel raster processing programming library test application using a geographic cellular automata model. Int. J. Geogr. Inf. Syst. 2010, 24, 695–722. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Yeh, A.G.-O. Cellular automata for simulating complex land use systems using neural networks. Geogr. Res. 2005, 24, 19–27. [Google Scholar]
- Li, K.R.; Wang, S.Q.; Cao, M.K. Vegetation and soil carbon storage in China. Sci. China Ser. D 2003, 47, 72–80. [Google Scholar] [CrossRef]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P.; Li, A.B. Organic carbon density and storage in soils of china and spatial analysis. Acta Pedol. Sin. 2004, 41, 35–43. [Google Scholar]
- Xie, X.L.; Sun, B.; Zhou, H.Z.; Li, Z.P. Soil carbon stocks and their influencing factors under native vegetations in China. Acta Pedol. Sin. 2004, 41, 687–699. [Google Scholar]
- Mei, H.; JinjJun, J.; Mingkui, C.; Kerang, L. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. [Google Scholar]
- Chuai, X.W.; Huang, X.J.; Zheng, Z.Q.; Zhang, M.; Liao, Q.L.; Lai, L.; Lu, J.Y. Land Use Change and Its Influence on Carbon Storage of Terrestrial Ecosystems in Jiangsu Province. Res. Sci. 2011, 33, 1932–1939. [Google Scholar]
- Tang, L.Y.; Duan, X.F.; Kong, F.J.; Zhang, F.; Zheng, Y.F.; Li, Z.; Mei, Y.; Zhao, Y.W.; Hu, S.J. Influences of climate change on area variation of Qinghai Lake on Qinghai-Tibetan Plateau since 1980s. Sci. Rep. 2018, 8, 7331. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.G.; Diamond, J. China’s environment in a globalizing world. Nature 2005, 435, 1179. [Google Scholar] [CrossRef]
- Qinghai Province Three-North Shelterbelt Project 40 Years of Artificial Afforestation 889,500 Hectares. Available online: http://www.forestry.gov.cn/main/72/content-1060041.html (accessed on 22 December 2017).
- Luo, C.F.; Changjun, X.U.; You, H.Y. Analysis on grassland degradation in Qinghai Lake Basin during 2000–2010. Acta Ecol. Sin. 2013, 33, 4450–4459. [Google Scholar]
- Nath, A.J.; Brahma, B.; Sileshi, G.W.; Das, A.K. Impact of land use changes on the storage of soil organic carbon in active and recalcitrant pools in a humid tropical region of India. Sci. Total Environ. 2018, 624, 908–917. [Google Scholar] [CrossRef] [PubMed]
- Tardieu, L.; Roussel, S.; Thompson, J.D.; Labarraque, D.; Salles, J.M. Combining direct and indirect impacts to assess ecosystem service loss due to infrastructure construction. J. Environ. Manag. 2015, 152, 145–157. [Google Scholar] [CrossRef] [PubMed]
- Quoc Vo, T.; Kuenzer, C.; Oppelt, N. How remote sensing supports mangrove ecosystem service valuation: A case study in Ca Mau province, Vietnam. Ecosyst. Serv. 2015, 14, 67–75. [Google Scholar] [CrossRef]
- Cao, V.; Margni, M.; Favis, B.D.; Deschênes, L. Aggregated indicator to assess land use impacts in life cycle assessment (LCA) based on the economic value of ecosystem services. J. Cleaner Prod. 2015, 94, 56–66. [Google Scholar] [CrossRef]
- He, C.Y.; Zhang, D.; Huang, Q.X.; Zhao, Y.Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Modell. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Li, Y.G.; Han, N.; Li, X.J.; Du, H.Q.; Mao, F.J.; Cui, L.; Liu, T.Y.; Xing, L.Q. Spatiotemporal Estimation of Bamboo Forest Aboveground Carbon Storage Based on Landsat Data in Zhejiang, China. Remote Sens. 2018, 10, 898. [Google Scholar] [CrossRef] [Green Version]
LULC | Above Ground | Below Ground | Soil Organic | Dead Organic | Source |
---|---|---|---|---|---|
Grassland | 35.3 | 26.5 | 80.9 | 2.2 | [48,49,50] |
Cropland | 5.7 | 80.7 | 28.4 | 1 | [48,49,50] |
Construction Land | 12 | 0 | 71 | 1 | [48,49,50] |
Woodland | 42.4 | 120 | 236.9 | 67.5 | [48,49,50] |
Wetland | 35 | 90 | 208.5 | 25 | [48,49,50] |
Water | 10 | 8 | 0 | 0 | [48,49,50] |
Unused Land | 4 | 20 | 74.6 | 0 | [48,49,50] |
Grassland | Cropland | Construction Land | Woodland | Wetland | Water | Unused Land | Total | ||
---|---|---|---|---|---|---|---|---|---|
Grassland | 1,865,864 | 14,659 | 3271 | 42,263 | 48,525 | 2335 | 60,820 | 2,037,736 | |
91.57% | 0.72% | 0.16% | 2.08% | 2.38% | 0.11% | 2.99% | |||
Cropland | 15,028 | 37,324 | 1288 | 0 | 73 | 238 | 439 | 54,390 | |
27.63% | 68.62% | 2.37% | 0 | 0.13% | 0.44% | 0.81% | |||
Construction Land | 113 | 203 | 425 | 0 | 0 | 0 | 0 | 741 | |
15.28% | 27.39% | 57.34% | 0 | 0 | 0 | 0 | |||
Woodland | 30,572 | 0 | 0.50 | 13,710 | 782 | 49 | 365 | 45,479 | |
67.22% | 0 | 0 | 30.15% | 1.72% | 0.11% | 0.80% | |||
Wetland | 58,753 | 130 | 146 | 106 | 58,964 | 1063 | 623 | 119,785 | |
49.05% | 0.11% | 0.12% | 0.09% | 49.22% | 0.89% | 0.52% | |||
Water | 3292 | 0.50 | 0 | 0 | 708 | 433,238 | 512 | 437,750 | |
0.75% | 0 | 0 | 0 | 0.16% | 98.97% | 0.12% | |||
Unused Land | 79,321 | 0 | 0 | 236 | 378 | 4561 | 131,958 | 213,453 | |
37.16% | 0 | 0 | 0 | 0.18% | 2.14% | 60.42% | |||
Total | 2,050,812 | 52,317 | 5131 | 56,316 | 109,428 | 441,483 | 191,717 | 2,912,334 |
Land Type | 2015 | 2020 | 2030 | ||||
---|---|---|---|---|---|---|---|
NG | CP | EP | NG | CP | EP | ||
Grassland | 20,508 | 20,539 | 20,508 | 20,539 | 20,599 | 20,599 | 20,713 |
Cropland | 523 | 495 | 504 | 492 | 502 | 516 | 492 |
Construction land | 51 | 31 | 47 | 30 | 31 | 59 | 30 |
Woodland | 563 | 560 | 591 | 619 | 573 | 619 | 562 |
Wetland | 1094 | 1074 | 1244 | 1279 | 1032 | 1258 | 1343 |
Water | 4415 | 4391 | 4403 | 4415 | 4395 | 4411 | 4394 |
Unused land | 1917 | 1984 | 1775 | 1698 | 1940 | 1610 | 1538 |
Carbon Storage | Grassland | Cropland | Construction Land | Woodland | Wetland | Water | Unused Land | Total | |
---|---|---|---|---|---|---|---|---|---|
2015 | 297.16 | 6.01 | 0.43 | 26.29 | 39.23 | 7.95 | 18.91 | 395.97 | |
2020 | NG | 297.60 | 5.68 | 0.25 | 26.15 | 38.49 | 7.90 | 19.56 | 395.64 |
CP | 297.16 | 5.79 | 0.39 | 27.60 | 44.61 | 7.93 | 17.50 | 400.97 | |
EP | 297.60 | 5.65 | 0.25 | 28.92 | 45.85 | 7.95 | 16.75 | 402.96 | |
2030 | NG | 298.48 | 5.76 | 0.26 | 26.73 | 37.00 | 7.91 | 19.13 | 395.28 |
CP | 298.48 | 5.92 | 0.49 | 28.92 | 45.11 | 7.94 | 15.87 | 402.74 | |
EP | 300.13 | 5.65 | 0.25 | 26.25 | 48.14 | 7.91 | 15.17 | 403.50 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Gong, J.; Guldmann, J.-M.; Li, S.; Zhu, J. Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sens. 2020, 12, 528. https://doi.org/10.3390/rs12030528
Li J, Gong J, Guldmann J-M, Li S, Zhu J. Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sensing. 2020; 12(3):528. https://doi.org/10.3390/rs12030528
Chicago/Turabian StyleLi, Jingye, Jian Gong, Jean-Michel Guldmann, Shicheng Li, and Jie Zhu. 2020. "Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data" Remote Sensing 12, no. 3: 528. https://doi.org/10.3390/rs12030528
APA StyleLi, J., Gong, J., Guldmann, J.-M., Li, S., & Zhu, J. (2020). Carbon Dynamics in the Northeastern Qinghai–Tibetan Plateau from 1990 to 2030 Using Landsat Land Use/Cover Change Data. Remote Sensing, 12(3), 528. https://doi.org/10.3390/rs12030528