Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Field Data Acquisition
2.3. Acquisition of UAV Images
2.4. Processing of UAV Images
2.5. Selection of Vegetation Index
2.6. Modeling Methods and Validation
3. Results
3.1. Variations of Wheat Growth Indices and Yield
3.2. LAI Estimation based on UAV Images
3.3. LDM Estimation based on UAV Images
3.4. Yield Estimation based on UAV Images
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, L.; Liu, J.; Yang, L.; Chen, Z.; Wang, X.; Ouyang, B. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring. Trans. Chin. Soc. Agric. Eng. 2013, 29, 136–145. [Google Scholar]
- LI, D.; LI, M. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System. Geomat. Inf. Sci. Wuhan Univ. 2014, 39, 505–513. [Google Scholar]
- Li, B.; Liu, R.; Liu, S.; Liu, Q.; Liu, F.; Zhou, G. Monitoring vegetation coverage variation of winter wheat by low-altitude UAV remote sensing system. Trans. Chin. Soc. Agric. Eng. 2012, 28, 160–165. [Google Scholar]
- Chen, Q.; Zhang, Z.; Liu, P.; Wang, X.; Jiang, F. Monitoring of Growth Parameters of Sweet Corn Using CGMD302 Spectrometer. Agric. Sci. Technol. 2015, 16, 364–368. [Google Scholar]
- Zhang, J.; Liu, X.; Liang, Y.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Using a Portable Active Sensor to Monitor Growth Parameters and Predict Grain Yield of Winter Wheat. Sensors 2019, 19, 1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Qi, B.; Zhao, J.; Zhang, X.; Wang, S.; Zhao, T.; Gai, J. Prediction for Soybean Grain Yield Using Active Sensor GreenSeeker. Acta Agron. Sin. 2014, 40, 657–666. [Google Scholar] [CrossRef]
- Yang, G.; Li, C.; Yu, H.; Xu, B.; Feng, H.; Gao, L.; Zhu, D. UAV based multi-load remote sensing technologies for wheat breeding information acquiremen. Trans. Chin. Soc. Agric. Eng. 2015, 31, 184–190. [Google Scholar]
- Tian, M.; Ban, S.; Chang, Q.; You, M.; Luo, D.; Wang, L.; Wang, S. Use of hyperspectral images from UAV-based imaging spectroradiometer to estimate cotton leaf area index. Trans. Chin. Soc. Agric. Eng. 2016, 32, 102–108. [Google Scholar]
- Zhao, X.; Yang, G.; Liu, J.; Zhang, X.; Xu, B.; Wang, Y.; Zhao, C.; Gai, J. Estimation of soybean breeding yield based on optimization of spatial scale of UAV hyperspectral image. Trans. Chin. Soc. Agric. Eng. 2017, 33, 110–116. [Google Scholar]
- Han, L.; Yang, G.; Dai, H.; Xu, B.; Yang, H.; Feng, H.; Li, Z.; Yang, X. Modeling maize above-ground biomass based on machine learning approaches using UAV remote-sensing data. Plant Methods. 2019, 15, 10. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Zheng, H.; Xu, X.; He, J.; Ge, X.; Yao, X.; Cheng, T.; Zhu, Y.; Cao, W.; Tian, Y. Predicting grain yield in rice using multi-temporal vegetation indices from UAV-based multispectral and digital imagery. ISPRS J. Photogramm. 2017, 130, 246–255. [Google Scholar] [CrossRef]
- Bendig, J.; Bolten, A.; Bennertz, S.; Broscheit, J.; Eichfuss, S.; Bareth, G. Estimating Biomass of Barley Using Crop Surface Models (CSMs) Derived from UAV-Based RGB Imaging. Remote Sens. 2014, 6, 10395–10412. [Google Scholar] [CrossRef] [Green Version]
- Ata-Ul-Karim, S.; Zhu, Y.; Yao, X.; Cao, W. Determination of critical nitrogen dilution curve based on leaf area index in rice. Field Crop. Res. 2014, 167, 76–85. [Google Scholar] [CrossRef]
- Córcoles, J.; Ortega, J.; Hernández, D.; Moreno, M. Estimation of leaf area index in onion (Allium cepa L.) using an unmanned aerial vehicle. Biosyst. Eng. 2013, 115, 31–42. [Google Scholar]
- Gao, L.; Yang, G.; Yu, H.; Xu, B.; Zhao, X.; Dong, J.; Ma, Y. Retrieving winter wheat leaf area index based on unmanned aerial vehicle hyperspectral remoter sensing. Trans. Chin. Soc. Agric. Eng. 2016, 32, 113–120. [Google Scholar]
- Aasen, H.; Burkart, A.; Bolten, A.; Bareth, G. Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS J. Photogramm. 2015, 108, 245–259. [Google Scholar] [CrossRef]
- Tan, C.; Du, Y.; Tong, L.; Zhou, J.; Luo, M.; Yan, W.; Chen, F. Comparison of the Methods for Predicting Wheat Yield Based on Satellite Remote Sensing Data at Anthesis. Sci. Agric. Sin. 2017, 50, 3101–3109. [Google Scholar]
- Chen, Z.; Ren, J.; Tang, H.; Shi, Y.; Leng, P.; Liu, J.; Wang, L.; Wu, W.; Yao, Y.; Hasiyuya. Progress and perspectives on agricultural remote sensing research and applications in China. J. Remote Sens. 2016, 20, 748–767. [Google Scholar]
- Zhu, W.; Li, S.; Zhang, X.; Li, Y.; Sun, Z. Estimation of winter wheat yield using optimal vegetation indices from unmanned aerial vehicle remote sensing. Trans. Chin. Soc. Agric. Eng. 2018, 34, 78–86. [Google Scholar]
- Gong, Y.; Duan, B.; Fang, S.; Zhu, R.; Wu, X.; Ma, Y.; Peng, Y. Remote estimation of rapeseed yield with unmanned aerial vehicle (UAV) imaging and spectral mixture analysis. Plant Methods. 2018, 14, 70. [Google Scholar] [CrossRef]
- Yu, N.; Li, L.; Schmitz, N.; Tian, L.; Greenberg, J.; Diers, B. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform. Remote Sens. Environ. 2016, 187, 91–101. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Lan, Y.; Zhou, Z.; Luo, X. Radiometric calibration of low altitude multispectral remote sensing images. Trans. Chin. Soc. Agric. Eng. 2014, 30, 199–206. [Google Scholar]
- Taddeo, S.; Dronova, I.; Depsky, N. Spectral vegetation indices of wetland greenness: Responses to vegetation structure, composition, and spatial distribution. Remote Sens. Environ. 2019, 234, 111467. [Google Scholar] [CrossRef]
- Qi, J.; Kerr, Y.; Moran, M.; Weltz, M.; Huete, A.; Sorooshian, S.; Bryant, R. Leaf Area Index Estimates Using Remotely Sensed Data and BRDF Models in a Semiarid Region. Remote Sens. Environ. 2000, 73, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Fitzgerald, G.; Rodriguez, D.; Christensen, L.; Belford, R.; Sadras, V.; Clarke, T. Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precis. Agric. 2006, 7, 223–248. [Google Scholar] [CrossRef]
- Dong, L.; Qingsong, G.; Wenjiang, H.; Linsheng, H.; Guijun, Y. Remote sensing inversion of leaf area index based on support vector machine regression in winter wheat. Trans. Chin. Soc. Agric. Eng. 2013, 29, 117–123. [Google Scholar]
- Wu, Y.; He, L.; Wang, Y.; Liu, B.; Wang, Y.; Guo, T.; Feng, W. Dynamic model of vegetation indices for biomass and nitrogen accumulation in winter wheat. Acta Agron. Sin. 2019, 45, 1238–1249. [Google Scholar]
- Steven, M. The Sensitivity of the OSAVI Vegetation Index to Observational Parameters. Remote Sens. Environ. 1998, 63, 49–60. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Li, F.; Mistele, B.; Hu, Y.; Yue, X.; Yue, S.; Miao, Y.; Chen, X.; Cui, Z.; Meng, Q.; Schmidhalter, U. Remotely estimating aerial N status of phenologically differing winter wheat cultivars grown in contrasting climatic and geographic zones in China and Germany. Field Crop. Res. 2012, 138, 21–32. [Google Scholar] [CrossRef]
- Sripada, R.; Heiniger, R.; White, J.; Meijer, A. Aerial Color Infrared Photography for Determining Early In-Season Nitrogen Requirements in Corn. Agron. J. 2006, 98, 968. [Google Scholar] [CrossRef]
- Wigneron, J.; Jackson, T.; O’Neill, P.; De Lannoy, G.; de Rosnay, P.; Walker, J.; Ferrazzoli, P.; Mironov, V.; Bircher, S.; Grant, J.; et al. Modelling the passive microwave signature from land surfaces: A review of recent results and application to the L-band SMOS & SMAP soil moisture retrieval algorithms. Remote Sens. Environ. 2017, 192, 238–262. [Google Scholar]
- Chen, Y.; Ma, W.; Wang, X.; Zhao, C. Relationship between Soil Nutrient and Wheat Yield Based on PLS. Trans. Chin. Soc. Agric. Mach. 2012, 43, 159–164. [Google Scholar]
- Yu, X.; Liu, Q.; Wang, Y.; Liu, X.; Liu, X. Evaluation of MLSR and PLSR for estimating soil element contents using visible/near-infrared spectroscopy in apple orchards on the Jiaodong peninsula. Catena 2016, 137, 340–349. [Google Scholar] [CrossRef]
- Kasim, N.; Shi, Q.; Wang, J.; Sawut, R.; Nurmemet, I.; Isak, G. Estimation of spring wheat chlorophyll content based on hyperspectral features and PLSR model. Trans. Chin. Soc. Agric. Eng. 2017, 33, 208–216. [Google Scholar]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: a basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Rossel, R.; Behrens, T. Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma 2010, 158, 46–54. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, K.; Tang, C.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; Liu, X. Estimation of Rice Growth Parameters Based on Linear Mixed-Effect Model Using Multispectral Images from Fixed-Wing Unmanned Aerial Vehicles. Remote Sens. 2019, 11, 1371. [Google Scholar] [CrossRef] [Green Version]
- Were, K.; Bui, D.; Dick, Ø.; Singh, B. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 2015, 52, 394–403. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, G.; Li, H.; Tang, F.; Liu, C.; Zhang, L. Remote Sensing Inversion of Leaf Area Index of Winter Wheat Based on Random Forest Algorithm. Sci. Agric. Sin. 2018, 51, 855–867. [Google Scholar]
- He, T.; Xie, C.; Liu, Q.; Guan, S.; Liu, G. Evaluation and Comparison of Random Forest and A-LSTM Networks for Large-scale Winter Wheat Identification. Remote Sens. 2019, 11, 1665. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.; Liu, Y.; Gong, Y.; Peng, Y.; Wu, X.; Zhu, R.; Fang, S. Remote estimation of rice LAI based on Fourier spectrum texture from UAV image. Plant Methods. 2019, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, W.; Sun, Z.; Huang, Y.; Lai, J.; Li, J.; Zhang, J.; Yang, B.; Li, B.; Li, S.; Zhu, K.; et al. Improving Field-Scale Wheat LAI Retrieval Based on UAV Remote-Sensing Observations and Optimized VI-LUTs. Remote Sens. 2019, 11, 2456. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yuan, F.; Ata-UI-Karim, S.T.; Zheng, H.; Cheng, T.; Liu, X.; Tian, Y.; Zhu, Y.; Cao, W.; Cao, Q. Combining Color Indices and Textures of UAV-Based Digital Imagery for Rice LAI Estimation. Remote Sens. 2019, 11, 1763. [Google Scholar] [CrossRef] [Green Version]
- Guo, W.; Zhu, Y.; Wang, H.; Zhang, J.; Dong, P.; Qiao, H. Monitoring Model of Winter Wheat Take-all Based on UAV Hyperspectral Imaging. Trans. Chin. Soc. Agric. Mach. 2019, 50, 162–169. [Google Scholar]
- Zarco-Tejada, P.; Diaz-Varela, R.; Angileri, V.; Loudjani, P. Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. Eur. J. Agron. 2014, 55, 89–99. [Google Scholar] [CrossRef]
- Jing, Y.; Li, G.; Huang, W. Estimation of double cropping rice planting area using similar index and linear spectral mixture model. Trans. Chin. Soc. Agric. Eng. 2013, 29, 177–183. [Google Scholar]
- Goswami, S.; Gamon, J.; Vargas, S.; Tweedie, C. Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska. PeerJ. 2015, 3, e911v–e913v. [Google Scholar]
- Knipling, E.B. Physical and physiological basis for the reflectance of visible and near-infrared radiation from vegetation. Remote Sens. Environ. 1970, 1, 155–159. [Google Scholar] [CrossRef]
- Li, R.; Li, C.; Xu, X.; Wang, J.; Yang, X.; Huang, W.; Pan, Y. Winter wheat yield estimation based on support vector machine regression and multi-temporal remote sensing data. Trans. Chin. Soc. Agric. Eng. 2009, 25, 114–117. [Google Scholar]
- Groten, S. NDVI—Crop monitoring and early yield assessment of Burkina Faso. Int. J. Remote Sens. 1993, 14, 1495–1515. [Google Scholar] [CrossRef]
Experiment and Place | Cultivars and Season | Nitrogen Rates (kg ha−1) | Seeding Densities (Million Seedlings ha−1) | Plot Size | Sampling Stages |
---|---|---|---|---|---|
Exp.1 | Yangmai-23 | N0 (0) | D1 (1.2) | 30 m2 | Tillering (6 March 2019) |
Xinghua | 2018–2019 | N1 (180) | D2 (1.8) | 5 m × 6 m | Jointing (12 March 2019) |
N2 (240) | D3 (2.4) | 90 plots | Booting (4 April 2019) | ||
N3 (300) | Flowering (20 Apr 2019) | ||||
Filling (9 May 2019) | |||||
Exp.2 | Yangmai-15 | N0 (0) | D1 (1.2) | 24.5 m2 | Tillering (4 March 2019) |
Kunshan | 2018–2019 | N1 (180) | D2 (1.8) | 5.5 m × 4.5 m | Jointing (14 March 2019) |
N2 (270) | D3 (2.4) | 84 plots | Booting (30 March 2019) | ||
Flowering (17 April 2019) | |||||
Filling (5 May 2019) | |||||
Exp.3 | Xumai-33 | N0 (0) | D1 (1.5) | 20 m2 | Tillering (7 March 2019) |
Suining | 2018–2019 | N1 (180) | D2 (2.5) | 4 m × 5 m | Jointing (13 March 2019) |
N2 (240) | D3 (3.5) | 108 plots | Booting (8 April 2019) | ||
N3 (300) | Flowering (24 April 2019) | ||||
Filling (15 May 2019) |
Vegetation Index | Formulation | Reference |
---|---|---|
GNDVI | (NIR − G)/(NIR + G) | [23] |
NDVI | (NIR − R)/(NIR + R) | [24] |
NDRE | (NIR − RE)/(NIR + RE) | [25] |
RVI | NIR/R | [26] |
CIRE | (NIR/RE) − 1 | [27] |
OSAVI | (NIR − R)/(NIR + R + 0.16) | [28] |
SAVI | (1 + L)*(NIR − R)/(NIR + R + L) | [29] |
CCCI | (NDRE − NDREmin)/(NDREmax − NDREmin) | [30] |
RESAVI | 1.5*(NIR − RE)/(NIR + RE + 0.5) | [31] |
Indicators | Sample Number | Min | Max | Mean | SD | C.V. (%) |
---|---|---|---|---|---|---|
Modeled dataset | ||||||
LAI | 210 | 0.7524 | 4.9392 | 2.5707 | 0.9721 | 37.81 |
LDM (t/ha) | 210 | 2.6224 | 23.4500 | 11.0954 | 4.7065 | 42.42 |
Yield (t/ha) | 72 | 1.3000 | 8.5000 | 6.0011 | 1.8065 | 30.10 |
Validated dataset | ||||||
LAI | 90 | 0.6765 | 5.3046 | 2.6112 | 1.0527 | 40.31 |
LDM (t/ha) | 90 | 2.2429 | 21.8400 | 11.1606 | 5.0583 | 45.32 |
Yield (t/ha) | 30 | 3.0920 | 8.5102 | 6.4665 | 1.4044 | 21.72 |
Vegetation Index | Tillering Stage | Jointing Stage | Booting Stage | Flowering Stage | Filling Stage |
---|---|---|---|---|---|
GNDVI (850,570) | 0.1139 ** | 0.5378 ** | 0.7199 ** | 0.7422 ** | 0.4057 ** |
NDVI (850,675) | 0.1491 ** | 0.6328 ** | 0.7617 ** | 0.7661 ** | 0.5692 ** |
NDRE (850,730) | 0.1757 ** | 0.4234 ** | 0.6841 ** | 0.7838 ** | 0.6804 ** |
RVI (850,675) | 0.1433 ** | 0.4073 ** | 0.5949 ** | 0.6910 ** | 0.5394 ** |
CIRE (850,730) | 0.1768 ** | 0.3858 ** | 0.6251 ** | 0.7455 ** | 0.6614 ** |
OSAVI (850,675) | 0.1494 ** | 0.5770 ** | 0.7339 ** | 0.7698 ** | 0.5384 ** |
SAVI (850,675) | 0.1486 ** | 0.5284 ** | 0.6779 ** | 0.7398 ** | 0.5045 ** |
CCCI (850,730) | 0.1757 ** | 0.4234 ** | 0.6841 ** | 0.7837 ** | 0.6806 ** |
RESAVI (850,730) | 0.1704 ** | 0.3882 ** | 0.6279 ** | 0.7527 ** | 0.6622 ** |
Vegetation Indices for Modeling | LR | MLR | SMLR | PLSR | ANN | RF |
---|---|---|---|---|---|---|
NDRE (Flowering) | 0.7000 a 0.1307 b | \ | \ | \ | \ | \ |
NDVI (Flowering), NDRE (Flowering), OSAVI (Flowering), CCCI (Flowering) | \ | 0.7490 a 0.1142 b | 0.7490 a 0.1142 b | 0.7542 a 0.1353 b | 0.7701 a 0.1126 b | 0.7606 a 0.1149 b |
NDVI (Jointing), NDVI (Booting), NDVI (Flowering), NDVI (Filling) | \ | 0.7186 a 0.1163 b | 0.7186 a 0.1163 b | 0.7571 a 0.1343 b | 0.7454 a 0.1100 b | 0.7800 a 0.1030 b |
NDVI (Jointing), NDVI (Booting), NDRE (Flowering), CCCI (Filling) | \ | 0.7572 a 0.1113 b | 0.7308 a 0.1197 b | 0.7667 a 0.1353 b | 0.7582 a 0.1132 b | 0.7602 a 0.1165 b |
Name | Category | Content | Example | Parameters contrast | Reference |
---|---|---|---|---|---|
Sensors | Imaging sensor | Hyperspectral camera | Cuber UHD185 Firefly imaging spectrometer of UAV | 125 bands (450–950 nm), sensor resolution: 2 million pixels | [45] |
Multispectral camera | Airphen | 6 bands (450 nm, 530 nm, 570 nm, 675 nm, 730 nm, 850 nm), 1280 × 960 pixels | This paper | ||
Non-imaging sensor | \ | GreenSeeker | 2 bands (656 nm, 774 nm), handheld | [6] | |
Platforms | Ground | \ | Analytical spectral devices (ASD) | Wavelength range: 325–1075 nm, spectral resolution: 3 nm | [45] |
Low-altitude | Fixed-wing UAV | FW I | Endurance: 60 min, maximum speed: 17.5 m/s | [46] | |
Multi-rotor UAV | DJI M600Pro | Endurance: 38 min, maximum speed: 18 m/s | This paper | ||
High-altitude | Satellite | MODIS | Spatial Resolution: 250 m (bands 1–2), 500 m (bands 3–7), 1000 m (bands 8–36) | [47] |
The Optimal Estimation Model | Vegetation Index | Modeling Method | Modeling R2 | Verified R2 | RRMSE |
---|---|---|---|---|---|
LAI | RESAVI (All stages) | LR | 0.74 | 0.74 | 0.1990 |
LDM | CIRE (All stages) | LR | 0.75 | 0.75 | 0.2372 |
Yield | NDVI (Jointing) NDVI (Booting) NDVI (Flowering) NDVI (Filling) | RF | 0.76 | 0.78 | 0.1030 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, Z.; Jiang, J.; Gao, Y.; Krienke, B.; Wang, M.; Zhong, K.; Cao, Q.; Tian, Y.; Zhu, Y.; Cao, W.; et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sens. 2020, 12, 508. https://doi.org/10.3390/rs12030508
Fu Z, Jiang J, Gao Y, Krienke B, Wang M, Zhong K, Cao Q, Tian Y, Zhu Y, Cao W, et al. Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sensing. 2020; 12(3):508. https://doi.org/10.3390/rs12030508
Chicago/Turabian StyleFu, Zhaopeng, Jie Jiang, Yang Gao, Brian Krienke, Meng Wang, Kaitai Zhong, Qiang Cao, Yongchao Tian, Yan Zhu, Weixing Cao, and et al. 2020. "Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle" Remote Sensing 12, no. 3: 508. https://doi.org/10.3390/rs12030508
APA StyleFu, Z., Jiang, J., Gao, Y., Krienke, B., Wang, M., Zhong, K., Cao, Q., Tian, Y., Zhu, Y., Cao, W., & Liu, X. (2020). Wheat Growth Monitoring and Yield Estimation based on Multi-Rotor Unmanned Aerial Vehicle. Remote Sensing, 12(3), 508. https://doi.org/10.3390/rs12030508