Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis
Abstract
:1. Introduction
- (1)
- The UAV was used as the remote sensing platform to make the data acquired by multispectral sensor easier to process, which could avoid the difficult atmospheric correction process due to low reflectance response. UAVs and ground WSN were combined into a complete acquisition system, to realize automatic data acquisition and improve acquisition efficiency.
- (2)
- The texture features of characteristic spectrum images were extracted by GLCM and CNN methods, respectively, and different fusion features were formed by combining with the characteristic spectrum to explore the optimal fusion features suitable for different water quality parameters.
- (3)
- A DNS-DNNs water quality spectrum inversion model was proposed. Due to the high computational complexity of the DNNs model, the dynamic network surgery method was adopted to induce the regular term by updating the weight matrix, so as to make it more sparse, thus effectively compressing the network and reducing the complexity.
- (4)
- In order to visually display the spatial variation law of water quality parameters, the DNS-DNNs optimal estimation model based on multi-source feature fusion was used to calculate and generate the prediction distribution diagram of DO and TUB, and the three-dimensional visualization of water quality parameters was realized.
2. Materials and Methods
2.1. Study Area
2.2. Wireless Sensor Network
2.3. Unmanned Aerial Remote Sensing System
2.4. Data Acquisition and Processing
2.5. Image Denoise and Feature Spectrum Acquisition
2.6. Image Texture Information Extraction
2.7. DNS-DNNs Algorithm
3. Results
3.1. Spectral Data Correlation Analysis and Texture Feature Extraction
3.2. Comparative Analysis of DNS-DNNs Modeling Results Based on Multi-Source Feature Fusion
3.3. Comparative Analysis of Water Quality Inversion Model Based on Feature Fusion
3.4. DO and TUB Content Verification and Distribution Dynamic Inversion
4. Discussion
4.1. DNS-DNNs Performance Analysis Based on Different Multi-Source Feature Fusion
4.2. Different Inversion Model Performance Analysis
4.3. Effects of Dynamic Inversion Distribution
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lynch, A.J.; Cooke, S.J.; Deines, A.M.; Bower, S.D.; Bunnell, D.B.; Cowx, I.G.; Nguyen, V.M.; Nohner, J.; Phouthavong, K.; Riley, B.; et al. The social, economic, and environmental importance of inland fish and fisheries. Environ. Rev. 2016, 24, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Sun, L.; Liu, C.; Yang, X.; Zhou, W.; Yang, B.; Schwenke, G.; Liu, D. A comparison of methane and nitrous oxide emissions from inland mixed-fish and crab aquaculture ponds. Sci. Total. Environ. 2018, 637, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Li, D.; He, D.; Wang, J.; Ma, D.; Li, F. A remote wireless system for water quality online monitoring in intensive fish culture Compute. Electron. Agric. 2010, 715, 53–59. [Google Scholar]
- Francisco, J.; Epinosa, F.; Guillermo, E.; Rendon, R. A ZigBee wireless sensor network for monitoring an aquaculture recirculating system. Appl. Res. Technol. 2012, 10, 380–387. [Google Scholar]
- Huang, J.; Wang, W.; Jiang, S.; Sun, D.; Ou, G.; Lu, K. Development and test of aquacultural water quality monitoring system based on wireless sensor network. Trans. Chin. Soc. Agric. Eng. (Trans. CSAE) 2013, 29, 183–190. [Google Scholar]
- Shi, B.; Zhao, D.; Liu, X.; Jiang, J.; Sun, Y. Design of intelligent monitoring system for aquaculture. Trans. Chin. Soc. Agric. Mach. 2011, 42, 191–196. [Google Scholar]
- Qi, L.; Zhang, J.; Xu, M.; Fu, Z.; Chen, W.; Zhang, X. Developing WSN-based traceability system for recirculation aquaculture. Math. Comput. Modeling 2011, 53, 2162–2172. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Shi, P. Intelligent monitoring system for aquiculture based on Internet of things. Trans. Chin. Soc. Agric. Mach. 2014, 45, 259–265. [Google Scholar]
- Bean, T.P.; Greenwood, N.; Beckett, R.; Biermann, L.; Bignel, J.P.; Brant, J.L.; Copp, G.H.; Devlin, M.J.; Dye, S.; Feist, S.W.; et al. A review of the tools used for marine monitoring in the UK: Combining historic and contemporary methods with modeling and socioeconomics to fulfill legislative needs and scientific ambitions. Front. Mar. Sci. 2017, 4, 263. Available online: https://doi.org/10.3389/fmars.2017.00263 (accessed on 15 August 2017). [CrossRef] [Green Version]
- Li, X.; Sun, W.; Li, L. Study on the Recognition of Spirulina Based on Visible Light Remote Sensing of the Small UAV. Geomat. Spat. Inf. Technol. 2017, 40, 153–156. [Google Scholar]
- Fabio, G.N.; Niculescu, S.; Gohin, F. Turbidity retrieval and monitoring of Danube Delta waters using multi-sensor optical remote sensing data: An integrated view from the delta plain lakes to the western-northwestern Black Sea coastal zone. Remote Sens. Environ. 2013, 132, 86–101. [Google Scholar]
- Gitelson, A.A.; Schalles, J.F.; Hladik, C.M. Remote chlorophyll-a retrieval in turbid, productive estuaries: Chesapeake Bay case study. Remote Sens. Environ. 2007, 109, 464–472. [Google Scholar] [CrossRef]
- Shi, R.; Zhang, H.; Yue, R.; Zhang, X.; Wang, M.; Shi, W. A wavelet theory based remote sensing inversion of chlorophyll a concentrations for inland lakes in arid areas using TM image data. Acta Ecologica Sinica 2017, 37, 1043–1053. [Google Scholar]
- Ai, Y.; Shen, Y. Measurement Uncertainty-Aware Quantitative Remote Sensing Inversion to Retrieve Suspended Matter Concentration in Inland Water. Acta Optica Sinica 2016, 36, 10–20. [Google Scholar]
- Olmanson, L.G.; Bauer, M.E.; Brezonik, P.L. A 20-year Landsat water clarity census of Minnesota’s 10,000 lakes. Remote Sens. Environ. 2008, 112, 4068–4097. [Google Scholar] [CrossRef]
- Tebbs, E.J.; Remedios, J.J.; Harper, D.M. Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline-alkaline, flamingo lake, using Landsat ETM+. Remote Sens. Environ. 2013, 135, 92–106. [Google Scholar] [CrossRef]
- Khattab, M.F.; Merkel, B.J. Application of Landsat 5 and Landsat 7 images data for water quality mapping in Mosul Dam Lake, Northern Iraq. Arab. J. Geosci. 2014, 7, 3557–3573. [Google Scholar] [CrossRef]
- Bachiller-Jareno, N.; Hutchins, M.G.; Bowes, M.J.; Charlton, M.B.; Orr, H.G. A novel application of remote sensing for modelling impacts of tree shading on water quality. J. Environ. Manag. 2019, 230, 33–42. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Sun, W.; Xue, B.; Aa, Y.; Liu, T. Non-point source pollution risks in a drinking water protection zone based on remote sensing data embedded within a nutrient budget model. Water Res. 2019, 157, 238–246. [Google Scholar] [CrossRef]
- Su, T.C. A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. Int. J. Appl. Earth Obs. Geo Inf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland Waters Suspended Solids Concentration Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019, 11, 1455. [Google Scholar] [CrossRef] [Green Version]
- Senthilnath, J.; Kandukuri, M.; Dokaniac, A.; Ramesh, K.N. Application of UAV imaging platform for vegetation analysis based on spectral-spatial methods. Comput. Electron. Agric. 2017, 140, 8–24. [Google Scholar] [CrossRef]
- R Veronez, M.; Kupssinskü, L.S.; TGuimarães, T.; Koste, E.C.; Da Silva, J.M.; De Souza, L.V.; Oliverio, W.F.; Jardim, R.S.; Koch, I.É.; De Souza, J.G.; et al. Proposal of a Method to Determine the Correlation between Total Suspended Solids and Dissolved Organic Matter in Water Bodies from Spectral Imaging and Artificial Neural Networks. Sensors 2018, 18, 159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peter, K.D.; d’Oleire-Oltmanns, S.; Ries, J.B.; Marzolff, I.; Hssaine, A.A. Soil erosion in gully catchments affected by land-levelling measures in the Souss Basin, Morocco, analyzed by rainfall simulation and UAV remote sensing data. Catena 2014, 113, 24–40. [Google Scholar] [CrossRef]
- Su, T.C.; Chou, H.T. Application of multispectral sensors carried on unmanned aerial vehicle (UAV) to trophic state mapping of small reservoirs: A case study of Tain-Pu reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.J.; Xia, K.; Feng, H.L.; Fang, Y.M. Inversion of water quality elements in small and micro-size water region using multispectral image by UAV. Acta Sci. Circumstantiae 2019, 39, 1241–1249. [Google Scholar]
- Mishra, S.; Mishra, D.R.; Lee, Z. Bio-Optical Inversion in Highly Turbid and Cyanobacteria-Dominated Waters. IEEE Trans. Geosci. Remote Sens. 2013, 52, 375–388. [Google Scholar] [CrossRef]
- He, T.D.; Li, J.W. A Method for Water Quality Remote Retrieva Based on Support Vector Regression with Parameters Optimized by Genetic Algorithm. Adv. Mater. Res. 2011, 383, 3593–3597. [Google Scholar] [CrossRef]
- Tang, J.; Wang, X.; Song, Q.; Li, T.; Chen, J.; Huang, H.; Ren, J. The statistic inversion algorithms of water constituents for the Huanghai Sea and the East China Sea. Acta Oceanol. Sin. 2004, 4, 617–626. [Google Scholar]
- Cannizzaro, J.P.; Carder, K.L. Estimating chlorophyll a concentrations from remote-sensing reflectance in optically shallow waters. Remote Sens. Environ. 2006, 101, 13–24. [Google Scholar] [CrossRef]
- Olmanson, L.G.; Brezonik, P.L.; Bauer, M.E. Airborne hyspectral remote sensing to assess spatial distribution of water Quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota. Remote Sens. Environ. 2012, 130, 254–265. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhu, L.; Li, J.; Chen, Y.; Zhang, Y.; Hou, H.; Ju, X.; Zhang, Y. The study of inversion of chlorophyll a in Taihu based on GF-1 WFV image and BP neural network. Acta Sci. Circumst. 2017, 1, 130–137. [Google Scholar]
- Sun, D.; Li, Y.; Wang, Q.; Le, C.; Huang, C.; Shi, K.; Wang, L. Study on remote sensing estimation of suspended matter concentration based on in situ hyperspectral data in Lake Tai waters. J. Infrared Millim. Wave 2009, 28, 124–128. [Google Scholar] [CrossRef]
- Cui, D. Application of extreme learning machine to total phosphorus and total nitrogen forecast in lakes and Reservoirs. Water Resour. Prot. 2013, 29, 61–66. [Google Scholar]
- Li, W.; Hicks, B.J.; Lin, M.; Guo, C.; Zhang, T.; Liu, J.; Li, Z.; Beauchamp, D.A. Impacts of hatchery-reared mandarin fish Siniperca chuatsi stocking on wild fish community and water quality in a shallow Yangtze lake. Sci. Rep. 2018, 8, 11481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, C.; Richardson, M.; King, D.J. The impacts of environmental variables on water reflectance measured using a lightweight unmanned aerial vehicle (UAV)-based spectrometer system. ISPRS J. Photogramm. Remote Sens. 2017, 130, 217–230. [Google Scholar] [CrossRef]
- Moran, M.S.; Bryant, R.; Thome, K.; Ni, W.; Nouvellon, Y.; Gonzalez-Dugo, M.P.; Qi, J.; Clarke, T.R. A refined empirical line approach for reflectance factor retrieval from Landsat-5 TM and Landsat-7 ETM+. Remote Sens. Environ. 2001, 78, 71–82. [Google Scholar] [CrossRef]
- Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral Remote Sensing from Unmanned Aircraft: Image Processing Workflows and Applications for Rangeland Environments. Remote Sens. 2011, 3, 2529–2551. [Google Scholar] [CrossRef] [Green Version]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Mei, H.; Deng, X.; Hong, T.; Luo, X.; Deng, X. Early detection and grading of citrus Huanglongbing using hyperspectral imaging technique. Trans. CSAE 2014, 30, 140–147. [Google Scholar]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiol. Plant. 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Xia, L.; Xie, X.; Pan, C. A model of dissolved oxygen in the Pearl River estuary based on measured spectrum. J. Guangzhou Univ. (Nat. Sci. Ed.) 2017, 16, 84–92. [Google Scholar]
- TASSAN, S. SeaWiFS potential for remote sensing of marine Trichodesmium at sub-bloom concentration. Int. J. Remote Sens. 1996, 16, 3619–3627. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Rock, B.N.; Moss, D.M. Red edge spectral measurements from sugar maple leaves. Int. J. Remote Sens. 1993, 14, 1563–1575. [Google Scholar] [CrossRef]
- Feng, L.; Hu, C.M.; Chen, X.L.; Tian, L.Q.; Chen, L.Q. Human Induced Turbidity Changes in Poyang Lake between 2000 and 2010: Observations from MODIS. Available online: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2011JC007864 (accessed on 14 December 2019).
- Liu, J.; Zhang, Y.; Zhang, D.; Sun, Z.; Li, X.; Yan, J.; Zhao, R.; Zhang, F.; Zhou, X. Path analysis of interactional relationship between Chlorophyll-a and environmental factors in freshwater fishponds. Freshw. Fish. 2018, 48, 26–33. [Google Scholar]
- Ouni, H.; Kawachi, A.; Irie, M.; M’Barek, N.B.; Hariga-Tlatli, N.; Tarhouni, J. Development of water turbidity index (WTI) and seasonal characteristics of total suspended matter (TSM) spatial distribution in Ichkeul Lake, a shallow brackish wetland, Northern-East Tunisia. Environ. Earth Sci. 2019, 78, 228. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X.; Zhang, L.A. Multichannel gray level co-occurrence matrix for multi/hyperspectral image texture representation. Remote Sens. 2014, 6, 8424–8445. [Google Scholar] [CrossRef] [Green Version]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017, 60, 84–90. [Google Scholar] [CrossRef]
- Guo, Y.W.; Yao, A.B.; Chen, Y.R. Dynamic network surgery for efficient DNNs. Advances in Neural Information Processing Systems. In Proceedings of the 30th Annual Conference on Neural Information Processing Systems, Barcelona, Spain, 5–10 December 2016; Cocrnell Univeristy: New York, NY, USA, 2017. [Google Scholar]
Spectral Parameters | Dissolved Oxygen (DO) | Turbidity (TUB) |
---|---|---|
Equation | Equation | |
S1 | ||
S2 | ARG:Mean( + + + ) 1 | |
S3 | RGR:/ | |
S4 | RGR:/ | |
S5 | ANIR: Mean | |
S6 | + | |
S7 | + | |
S8 | + + | |
S9 | ||
S10 | ||
S11 | ||
S12 | ||
S13 | + | |
S14 | + |
Input X: training datum (with or without label), {}: the reference model,base learning rate, learning policy |
Output: {}: the update parameter matrices and their binary masks. |
Repeat |
Choose a minibatch of network input from X |
Forward propagation and loss calculation with |
Backward propagation of the model output and generate |
for do |
Update by function and the current , with a probability of (iter) |
Update by formula (2) and the current loss function gradient |
end for |
Update: |
until iter reaches its desired maximum |
Spectral Parameters | DO | TUB | ||
---|---|---|---|---|
r | p | r | p | |
S1 | 0.8154 | 0.010 1 | 0.8843 | 0.013 1 |
S2 | −0.6122 | 0.150 | −0.8512 | 0.041 1 |
S3 | −0.8393 | 0.006 1 | 0.8211 | 0 1 |
S4 | 0.5516 | 0.481 | −0.7790 | 0.172 |
S5 | 0.7694 | 0.002 1 | −0.8207 | 0.006 1 |
S6 | 0.6124 | 0 1 | ||
S7 | 0.8470 | 0 1 | ||
S8 | −0.5178 | 0.142 | ||
S9 | −0.7609 | 0.019 1 | ||
S10 | −0.8131 | 0.040 1 | ||
S11 | 0.4150 | 0.524 | ||
S12 | 0.8001 | 0.045 1 | ||
S13 | 0.6064 | 0.876 | ||
S14 | −0.8360 | 0.001 1 |
Characteristic Parameters | Data Set | DO | TUB | ||
---|---|---|---|---|---|
RMSE | RMSE | ||||
Characteristic spectrum | Correction set | 0.6954 | 0.8050 | 0.6889 | 0.8673 |
Verification set | 0.6127 | 0.9942 | 0.5998 | 0.7838 | |
Feature Spectrum + GLCM texture feature | Correction set | 0.8563 | 0.2578 | 0.8445 | 0.2451 |
Verification set | 0.7901 | 0.2601 | 0.8114 | 0.2555 | |
Feature spectrum + CNN texture feature | Correction set | 0.8741 | 0.1938 | 0.8065 | 0.2584 |
Verification set | 0.8042 | 0.1907 | 0.7734 | 0.2764 | |
Feature spectrum + GLCM texture feature + CNN texture feature | Correction set | 0.8223 | 0.2451 | 0.8531 | 0.1807 |
Verification set | 0.8117 | 0.2550 | 0.8346 | 0.1794 |
Model | DO | TUB | ||
---|---|---|---|---|
RMSE | RMSE | |||
MLRM | 0.7695 | 0.3030 | 0.7727 | 0.8494 |
ANN | 0.7853 | 0.2953 | 0.7579 | 0.6971 |
ELM | 0.6493 | 0.3032 | 0.6451 | 0.6827 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Yue, X.; Wang, H.; Ling, K.; Liu, Y.; Wang, J.; Hong, J.; Pen, W.; Song, H. Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis. Remote Sens. 2020, 12, 402. https://doi.org/10.3390/rs12030402
Wang L, Yue X, Wang H, Ling K, Liu Y, Wang J, Hong J, Pen W, Song H. Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis. Remote Sensing. 2020; 12(3):402. https://doi.org/10.3390/rs12030402
Chicago/Turabian StyleWang, Linhui, Xuejun Yue, Huihui Wang, Kangjie Ling, Yongxin Liu, Jian Wang, Jinbao Hong, Wen Pen, and Houbing Song. 2020. "Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis" Remote Sensing 12, no. 3: 402. https://doi.org/10.3390/rs12030402
APA StyleWang, L., Yue, X., Wang, H., Ling, K., Liu, Y., Wang, J., Hong, J., Pen, W., & Song, H. (2020). Dynamic Inversion of Inland Aquaculture Water Quality Based on UAVs-WSN Spectral Analysis. Remote Sensing, 12(3), 402. https://doi.org/10.3390/rs12030402