Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation
Abstract
:1. Introduction
2. Data Set
2.1. Landsat Imagery
2.2. SURFRAD Data and Validation Sites
3. LST Retrieval Methods
3.1. Mono Window Algorithm
3.2. Single-Channel Algorithm
3.3. Radiative Transfer Equation Method
3.4. Split-Window Algorithm
4. Land Surface Emissivity (LSE) Models
4.1. LSE Model of Van de Griend and Owe
4.2. LSE Model of Valor and Caselles
4.3. NDVI Threshold (NDVITHM)-Based LSE Models
5. LST Computation Using Ground-Based SURFRAD Data
6. Results
6.1. Results of LST Algorithms and LSE Models Derived from Landsat 5 TM
6.2. Results of LST Algorithms and LSE Models Derived from Landsat 7 ETM+
6.3. Results of LST Algorithms and LSE Models Derived from Landsat 8 OLI/TIRS Data
6.4. Comparison of LST Retrieval Algorithms Considering All Landsat Missions
6.5. Analysis of Spatio-Temporal and Seasonal LST Variations Between LST Retrieval Methods
6.6. Automated LST Extraction Toolbox for Landsat Missions
7. Discussion
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Sensor | Scene ID | Scene Acquisition Date and Time (UTC) | Path-Row | To (°C) | RH (%) | NDVI Value | SURFRAD Station |
---|---|---|---|---|---|---|---|
LANDSAT 5 TM | LT50230322007167PAC01 | 16/06/2007–16:29 | 23–32 | 30.8 | 35.3 | 0.348 | BND |
LT50220322008243GNC01 | 30/08/2008–16:15 | 22–32 | 25.5 | 51.2 | 0.672 | ||
LT50230322010255PAC01 | 12/09/2010–16:26 | 23–32 | 24.8 | 32.2 | 0.438 | ||
LT50400352006267PAC01 | 24/09/2006–18:15 | 40–35 | 21.8 | 14.5 | 0.074 | DRA | |
LT50400352007142PAC01 | 22/05/2007–18:16 | 40–35 | 20.7 | 9.6 | 0.075 | ||
LT50400352011281PAC01 | 08/10/2011–18:10 | 40–35 | 16.8 | 31.3 | 0.088 | ||
LT50350262006136PAC01 | 16/05/2006–17:39 | 35–26 | 23.8 | 26.5 | 0.228 | FPK | |
LT50350262008238PAC01 | 25/08/2008–17:32 | 35–26 | 30.2 | 35.1 | 0.170 | ||
LT50360262011253PAC01 | 10/09/2011–17:43 | 36–26 | 27.6 | 28.6 | 0.330 | ||
LT50230362002249LGS01 | 06/09/2002–16:11 | 23–36 | 29.4 | 55.7 | 0.566 | GWN | |
LT50230362008218PAC01 | 05/08/2008–16:23 | 23–36 | 30.6 | 60.2 | 0.578 | ||
LT50230362011242PAC01 | 30/08/2011–16:26 | 23–36 | 31.2 | 33.6 | 0.552 | ||
LT50160322003267GNC02 | 24/09/2003–15:30 | 16–32 | 15.9 | 57.5 | 0.698 | PSU | |
LT50160322008233GNC01 | 20/08/2008–15:39 | 16–32 | 19.5 | 50.2 | 0.674 | ||
LT50160322009139GNC01 | 19/05/2009–15:40 | 16–32 | 15.9 | 29.9 | 0.390 | ||
LANDSAT 7 ETM+ | LE70230322000284EDC00 | 10/10/2000–16:26 | 23–32 | 13.0 | 35.5 | 0.515 | BND |
LE70230322001254EDC00 | 11/09/2001–16:24 | 23–32 | 24.1 | 40.0 | 0.535 | ||
LE70220322002186EDC00 | 05/07/2002–16:18 | 22–32 | 30.7 | 51.4 | 0.097 | ||
LE70400352001165EDC00 | 14/06/2001–18:12 | 40–35 | 23.3 | 12.8 | -0.025 | DRA | |
LE70400352001213EDC00 | 01/08/2001–18:11 | 40–35 | 32.5 | 10.9 | -0.030 | ||
LE70400352002168EDC00 | 17/06/2002–18:10 | 40–35 | 30.9 | 6.9 | -0.027 | ||
LE70350262000112EDC00 | 21/04/2000–17:39 | 35–26 | 21.2 | 22.6 | -0.068 | FPK | |
LE70360262001217EDC00 | 05/08/2001–17:43 | 36–26 | 28.2 | 32.8 | -0.068 | ||
LE70350262002181EDC00 | 30/06/2002–17:36 | 35–26 | 23.3 | 32.5 | -0.073 | ||
LE70220362000117EDC00 | 26/04/2000–16:23 | 22–36 | 18.9 | 43.4 | 0.300 | GWN | |
LE70230362000220EDC00 | 07/08/2000–16:28 | 23–36 | 32.5 | 55.1 | 0.258 | ||
LE70220362001167EDC00 | 16/06/2001–16:21 | 22–36 | 27.3 | 44.9 | 0.389 | ||
LE70160322000091EDC00 | 31/03/2000–15:45 | 16–32 | 7.8 | 37.7 | -0.029 | PSU | |
LE70160322002192EDC00 | 11/07/2002–15:41 | 16–32 | 17.9 | 44.4 | 0.375 | ||
LE70160322002256EDC00 | 13/09/2002–15:40 | 16–32 | 21.5 | 37.3 | 0.250 | ||
LANDSAT 8 OLI/TIRS | LC80230322013247LGN01 | 04/09/2013–16:38 | 23–32 | 23.9 | 57.2 | 0.621 | BND |
LC80230322018101LGN00 | 11/04/2018–16:35 | 23–32 | 12.8 | 57.2 | 0.421 | ||
LC80230322018117LGN00 | 27/04/2018–16:35 | 23–32 | 15.2 | 32.4 | 0.622 | ||
LC80400352017121LGN00 | 01/05/2017–18:22 | 40–35 | 23.5 | 14.0 | 0.110 | DRA | |
LC80400352018124LGN00 | 04/05/2018–18:21 | 40–35 | 26.4 | 14.6 | 0.108 | ||
LC80400352018236LGN00 | 24/08/2018–18:22 | 40–35 | 32.8 | 8.7 | 0.088 | ||
LC80350262017198LGN00 | 17/07/2017–17:48 | 35–26 | 24.7 | 22.1 | 0.213 | FPK | |
LC80360262018160LGN00 | 09/06/2018–17:53 | 36–26 | 27.5 | 51.2 | 0.370 | ||
LC80350262018249LGN00 | 06/09/2018–17:47 | 35–26 | 21.8 | 38.4 | 0.232 | ||
LC80220362016281LGN01 | 07/10/2016–16:32 | 22–36 | 27.5 | 44.0 | 0.410 | GWN | |
LC80220362017251LGN00 | 08/09/2017–16:32 | 22–36 | 22.5 | 44.8 | 0.626 | ||
LC80220362018094LGN00 | 04/04/2018–16:31 | 22–36 | 8.6 | 43.1 | 0.397 | ||
LC80160322015124LGN01 | 04/05/2015–15:51 | 16–32 | 24.3 | 24.1 | 0.365 | PSU | |
LC80160322016111LGN01 | 20/04/2016–15:51 | 16–32 | 15.2 | 15.2 | 0.512 | ||
LC80160322019263LGN00 | 20/09/2019–15:53 | 16–32 | 20.6 | 53.8 | 0.637 |
Appendix B
Appendix B.1. Brightness Temperature (T) Retrieval
SATELLITE | K1 (Watts/(m2∙srad∙μm)) | K2 (Kelvin) |
---|---|---|
Landsat 5 (Band6) | 607.76 | 1260.56 |
Landsat 7 (Band6) | 666.09 | 1282.71 |
Landsat 8 (Band10) | 774.89 | 1321.08 |
Landsat 8 (Band11) | 480.89 | 1201.14 |
Appendix B.2. Effective Mean Atmospheric Temperature (Ta) Retrieval
Model | Mean Atmospheric Temperature (Ta) in Kelvin |
---|---|
USA 1976 Standard | Ta = 25.940 + 0.8805 × To |
Tropical Region | Ta = 17.977 + 0.9172 × To |
Mid-latitude Summer Region | Ta = 16.011 + 0.9262 × To |
Mid-latitude Winter Region | Ta = 19.270 + 0.9112 × To |
Appendix B.3. Atmospheric Transmittance (τ), Upwelling Radiance (), and Downwelling Radiance () Retrieval
Model | Water Vapor Range | Equation |
---|---|---|
Mid-latitude Summer Region | 0.2–3.0 g/cm2 | |
Appendix C
Appendix D
Input Parameter | Uncertainty | Tb (K) | Estimated impact on LST | |||
---|---|---|---|---|---|---|
MWA | RTE | SCA | SWA | |||
LSE | ±0.01 | 285 | ±0.49 K | ±0.58 K | ±0.54 K | ±0.55 K |
290 | ±0.54 K | ±0.58 K | ±0.56 K | ±0.55 K | ||
295 | ±0.58 K | ±0.58 K | ±0.58 K | ±0.55 K | ||
300 | ±0.63 K | ±0.58 K | ±0.60 K | ±0.55 K | ||
Atmospheric Transmittance | ±0.01 | 285 | ±0.09 K | ±0.97 K | ±0.89 K | ±0.29 K |
290 | ±0.01 K | ±0.97 K | ±0.93 K | ±0.29 K | ||
295 | ±0.08 K | ±0.97 K | ±0.96 K | ±0.29 K | ||
300 | ±0.16 K | ±0.97 K | ±0.99 K | ±0.29 K | ||
Effective Mean Atmospheric Temperature | ±1 K | 285 | ±0.32 K | Not Applicable | Not Applicable | Not Applicable |
290 | ±0.32 K | Not Applicable | Not Applicable | Not Applicable | ||
295 | ±0.32 K | Not Applicable | Not Applicable | Not Applicable | ||
300 | ±0.32 K | Not Applicable | Not Applicable | Not Applicable | ||
±10% | 285 | Not Applicable | ±1.82 K | ±1.66 K | Not Applicable | |
290 | Not Applicable | ±1.82 K | ±1.72 K | Not Applicable | ||
295 | Not Applicable | ±1.82 K | ±1.78 K | Not Applicable | ||
300 | Not Applicable | ±1.82 K | ±1.84 K | Not Applicable | ||
±10% | 285 | Not Applicable | ±0.07 K | ±0.06 K | Not Applicable | |
290 | Not Applicable | ±0.07 K | ±0.06 K | Not Applicable | ||
295 | Not Applicable | ±0.07 K | ±0.07 K | Not Applicable | ||
300 | Not Applicable | ±0.07 K | ±0.07 K | Not Applicable |
Appendix E
Sensor | Scene Acquisition Date and Time (UTC) | W/(m2*sr*µm) | τ | Ta (K) | θsz (L5-7)/θse (L8) (°) | d (Astronomical Unit) | |
---|---|---|---|---|---|---|---|
LANDSAT 5 TM | 16/06/2007–16:29 | 2.28 | 3.68 | 0.71 | 297.53 | 24.89 | 1.0159 |
30/08/2008–16:15 | 2.07 | 3.29 | 0.75 | 292.62 | 38.04 | 1.0095 | |
12/09/2010–16:26 | 1.74 | 2.82 | 0.77 | 291.97 | 41.14 | 1.0064 | |
24/09/2006–18:15 | 0.63 | 1.09 | 0.91 | 289.19 | 41.95 | 1.0031 | |
22/05/2007–18:16 | 0.38 | 0.69 | 0.94 | 288.17 | 24.51 | 1.0123 | |
08/10/2011–18:10 | 0.57 | 0.97 | 0.91 | 284.56 | 46.31 | 0.9991 | |
16/05/2006–17:39 | 0.88 | 1.51 | 0.87 | 291.05 | 33.20 | 1.0112 | |
25/08/2008–17:32 | 2.02 | 3.28 | 0.77 | 296.97 | 42.45 | 1.0106 | |
10/09/2011–17:43 | 1.15 | 1.92 | 0.86 | 294.57 | 47.05 | 1.0070 | |
06/09/2002–16:11 | 4.38 | 6.41 | 0.48 | 296.23 | 37.92 | 1.0079 | |
05/08/2008–16:23 | 3.91 | 5.87 | 0.53 | 297.34 | 29.47 | 1.0143 | |
30/08/2011–16:26 | 3.17 | 4.89 | 0.61 | 297.90 | 33.94 | 1.0097 | |
24/09/2003–15:30 | 1.29 | 2.11 | 0.82 | 283.73 | 46.09 | 1.0032 | |
20/08/2008–15:39 | 1.75 | 2.81 | 0.76 | 287.06 | 35.38 | 1.0117 | |
19/05/2009–15:40 | 0.59 | 1.02 | 0.91 | 283.73 | 27.80 | 1.0118 | |
LANDSAT 7 ETM+ | 10/10/2000–16:26 | 0.48 | 0.81 | 0.93 | 281.04 | 50.45 | 0.9984 |
11/09/2001–16:24 | 1.73 | 2.8 | 0.78 | 291.32 | 41.07 | 1.0066 | |
05/07/2002–16:18 | 3.31 | 5.13 | 0.6 | 297.44 | 26.84 | 1.0167 | |
14/06/2001–18:12 | 0.51 | 0.91 | 0.93 | 290.58 | 24.10 | 1.0157 | |
01/08/2001–18:11 | 0.95 | 1.63 | 0.88 | 299.10 | 28.81 | 1.0149 | |
17/06/2002–18:10 | 0.69 | 1.22 | 0.92 | 297.62 | 24.35 | 1.0160 | |
21/04/2000–17:39 | 0.77 | 1.32 | 0.88 | 288.64 | 40.00 | 1.0052 | |
05/08/2001–17:43 | 1.6 | 2.64 | 0.8 | 295.12 | 36.62 | 1.0143 | |
30/06/2002–17:36 | 0.82 | 1.41 | 0.89 | 290.58 | 30.75 | 1.0167 | |
26/04/2000–16:23 | 1.28 | 2.1 | 0.82 | 286.51 | 29.20 | 1.0065 | |
07/08/2000–16:28 | 4.87 | 7.09 | 0.41 | 299.10 | 28.93 | 1.0140 | |
16/06/2001–16:21 | 1.81 | 3.16 | 0.76 | 294.29 | 23.80 | 1.0159 | |
31/03/2000–15:45 | 0.42 | 0.71 | 0.93 | 276.23 | 41.37 | 0.9992 | |
11/07/2002–15:41 | 0.8 | 1.35 | 0.89 | 285.58 | 27.49 | 1.0166 | |
13/09/2002–15:40 | 1.31 | 2.16 | 0.83 | 288.92 | 41.68 | 1.0061 | |
LANDSAT 8 OLI/TIRS | 04/09/2013–16:38 | 1.88 | 3.06 | 0.77 | 291.14 | 52.48 | - |
11/04/2018–16:35 | 0.88 | 1.49 | 0.87 | 280.86 | 53.35 | - | |
27/04/2018–16:35 | 0.49 | 0.85 | 0.93 | 283.08 | 58.58 | - | |
01/05/2017–18:22 | 0.5 | 0.9 | 0.93 | 290.77 | 62.45 | - | |
04/05/2018–18:21 | 0.55 | 0.99 | 0.93 | 293.45 | 63.08 | - | |
24/08/2018–18:22 | 0.64 | 1.15 | 0.93 | 299.38 | 58.18 | - | |
17/07/2017–17:48 | 0.79 | 1.38 | 0.89 | 291.88 | 58.33 | - | |
09/06/2018–17:53 | 2.22 | 3.61 | 0.73 | 294.47 | 60.62 | - | |
06/09/2018–17:47 | 1.43 | 2.38 | 0.81 | 289.19 | 45.00 | - | |
07/10/2016–16:32 | 2.17 | 3.51 | 0.74 | 294.47 | 46.10 | - | |
08/09/2017–16:32 | 1.52 | 2.51 | 0.81 | 289.84 | 55.18 | - | |
04/04/2018–16:31 | 0.35 | 0.6 | 0.94 | 276.97 | 54.73 | - | |
04/05/2015–15:51 | 1.67 | 2.76 | 0.78 | 291.51 | 60.42 | - | |
20/04/2016–15:51 | 0.45 | 0.77 | 0.94 | 283.08 | 56.60 | - | |
20/09/2019–15:53 | 1.12 | 1.88 | 0.86 | 288.08 | 47.37 | - |
Sensor | Scene Acquisition Date and Time (UTC) | ||
---|---|---|---|
LANDSAT 8 OLI/TIRS | 04/09/2013–16:38 | 0.839 | 0.777 |
11/04/2018–16:35 | 0.913 | 0.871 | |
27/04/2018–16:35 | 0.933 | 0.898 | |
01/05/2017–18:22 | 0.942 | 0.912 | |
04/05/2018–18:21 | 0.936 | 0.904 | |
24/08/2018–18:22 | 0.941 | 0.910 | |
17/07/2017–17:48 | 0.924 | 0.886 | |
09/06/2018–17:53 | 0.820 | 0.755 | |
06/09/2018–17:47 | 0.901 | 0.855 | |
07/10/2016–16:32 | 0.847 | 0.787 | |
08/09/2017–16:32 | 0.883 | 0.832 | |
04/04/2018–16:31 | 0.938 | 0.906 | |
04/05/2015–15:51 | 0.921 | 0.882 | |
20/04/2016–15:51 | 0.951 | 0.925 | |
20/09/2019–15:53 | 0.876 | 0.822 |
Appendix F
References
- Prakash, A. Thermal remote sensing: Concepts, issues and applications. In Proceedings of the International Archives of Photogrammetry and Remote Sensing, Amsterdam, The Netherlands, 16–22 July 2002; Volume 23, pp. 239–243. [Google Scholar]
- Kahle, A.B. Surface thermal properties. In Remote Sensing in Geology; Siegal, B.S., Gillespie, A.R., Eds.; John Wiley & Sons, Inc.: New York, NY, USA, 1980; pp. 257–273. ISBN 0471790524. [Google Scholar]
- Sabins, F.F. Remote Sensing: Principles and Interpretation, 3rd ed.; W. H. Freeman: New York, NY, USA, 1996; ISBN 0716724421. [Google Scholar]
- Wan, Z.; Dozier, J. A generalized split-window algorithm for retrieving land-surface temperature from space. IEEE Trans. Geosci. Remote Sens. 1996, 34, 892–905. [Google Scholar]
- Meng, X.; Cheng, J.; Liang, S. Estimating land surface temperature from Feng Yun-3C/MERSI data using a new land surface emissivity scheme. Remote Sens. 2017, 9, 1247. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Xiao, J.; Bonafoni, S.; Berger, C.; Deilami, K.; Zhou, Y.; Frolking, S.; Yao, R.; Qiao, Z.; Sobrino, J. Satellite remote sensing of surface urban heat islands: Progress, challenges, and perspectives. Remote Sens. 2018, 11, 48. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Kerr, Y.H.; Lagouarde, J.P.; Nerry, F.; Ottlé, C. Land surface temperature retrieval techniques and applications. In Thermal Remote Sensing in Land Surface Processing; Quattrochi, D.A., Luvall, J.C., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 33–109. [Google Scholar]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Panov, N.; Goldberg, A. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Brunsell, N.A.; Gillies, R.R. Length scale analysis of surface energy fluxes derived from remote sensing. J. Hydrometeorol. 2003, 4, 1212–1219. [Google Scholar] [CrossRef]
- Kustas, W.; Anderson, M. Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteorol. 2009, 149, 2071–2081. [Google Scholar] [CrossRef]
- Dickinson, R.E. Land surface processes and climate—Surface albedos and energy balance. Adv. Geophys. 1983, 25, 305–353. [Google Scholar]
- Fang, L.; Zhan, X.; Hain, C.; Yin, J.; Liu, J.; Schull, M. An assessment of the impact of land thermal infrared observation on regional weather forecasts using two different data assimilation approaches. Remote Sens. 2018, 10, 625. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.; Göttsche, F.-M.; Olesen, F.-S.; Fischer, H. Land surface temperature and emissivity estimation from passive sensor data: Theory and practice—Current trends. Int. J. Remote Sens. 2002, 23, 2563–2594. [Google Scholar] [CrossRef]
- Martin, M.; Ghent, D.; Pires, A.; Göttsche, F.-M.; Cermak, J.; Remedios, J. Comprehensive in situ validation of five satellite land surface temperature data sets over multiple stations and years. Remote Sens. 2019, 11, 479. [Google Scholar] [CrossRef] [Green Version]
- Naughton, J.; McDonald, W. Evaluating the variability of urban land surface temperatures using drone observations. Remote Sens. 2019, 11, 1722. [Google Scholar] [CrossRef] [Green Version]
- Bonafoni, S.; Anniballe, R.; Gioli, B.; Toscano, P. Downscaling Landsat land surface temperature over the urban area of Florence. Eur. J. Remote Sens. 2016, 49, 553–569. [Google Scholar] [CrossRef]
- Sekertekin, A.; Kutoglu, S.H.; Kaya, S. Evaluation of spatio-temporal variability in land surface temperature: A case study of Zonguldak, Turkey. Environ. Monit. Assess. 2016, 188, 30. [Google Scholar] [CrossRef]
- Simwanda, M.; Ranagalage, M.; Estoque, R.C.; Murayama, Y. Spatial analysis of surface urban heat islands in four rapidly growing African cities. Remote Sens. 2019, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Li, F.; Sun, W.; Yang, G.; Weng, Q. Investigating spatiotemporal patterns of surface urban heat islands in the Hangzhou Metropolitan Area, China, 2000–2015. Remote Sens. 2019, 11, 1553. [Google Scholar] [CrossRef] [Green Version]
- Senay, G.B.; Schauer, M.; Velpuri, N.M.; Singh, R.K.; Kagone, S.; Friedrichs, M.; Litvak, M.E.; Douglas-Mankin, K.R. Long-term (1986–2015) crop water use characterization over the upper Rio Grande Basin of United States and Mexico using Landsat-based evapotranspiration. Remote Sens. 2019, 11, 1587. [Google Scholar] [CrossRef] [Green Version]
- Maffei, C.; Alfieri, S.; Menenti, M. Relating spatiotemporal patterns of forest fires burned area and duration to diurnal land surface temperature anomalies. Remote Sens. 2018, 10, 1777. [Google Scholar] [CrossRef] [Green Version]
- Sekertekin, A.; Arslan, N. Monitoring thermal anomaly and radiative heat flux using thermal infrared satellite imagery—A case study at Tuzla geothermal region. Geothermics 2019, 78, 243–254. [Google Scholar] [CrossRef]
- Coolbaugh, M.F.; Kratt, C.; Fallacaro, A.; Calvin, W.M.; Taranik, J.V. Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA. Remote Sens. Environ. 2007, 106, 350–359. [Google Scholar] [CrossRef]
- Eskandari, A.; De Rosa, R.; Amini, S. Remote sensing of Damavand volcano (Iran) using Landsat imagery: Implications for the volcano dynamics. J. Volcanol. Geotherm. Res. 2015, 306, 41–57. [Google Scholar] [CrossRef]
- Mia, M.; Fujimitsu, Y.; Nishijima, J. Monitoring of thermal activity at the Hatchobaru–Otake geothermal area in Japan using multi-source satellite images—With comparisons of methods, and solar and seasonal effects. Remote Sens. 2018, 10, 1430. [Google Scholar] [CrossRef] [Green Version]
- Hulley, G.C.; Hook, S.J. The North American ASTER Land Surface Emissivity Database (NAALSED) version 2.0. Remote Sens. Environ. 2009, 113, 1967–1975. [Google Scholar] [CrossRef]
- Townshend, J.R.G.R.; Justice, C.O.O.; Skole, D.; Malingreau, J.-P.P.; Cihlar, J.; Teillet, P.; Sadowski, F.; Ruttenberg, S. The 1 km resolution global data set: Needs of the international geosphere biosphere programme! Int. J. Remote Sens. 1994, 15, 3417–3441. [Google Scholar] [CrossRef]
- Becker, F.; Li, Z.-L. Surface temperature and emissivity at various scales: Definition, measurement and related problems. Remote Sens. Rev. 1995, 12, 225–253. [Google Scholar] [CrossRef]
- Hale, R.C.; Gallo, K.P.; Tarpley, D.; Yu, Y. Characterization of variability at in situ locations for calibration/validation of satellite-derived land surface temperature data. Remote Sens. Lett. 2011, 2, 41–50. [Google Scholar] [CrossRef]
- Gao, C.; Jiang, X.; Li, Z.-L.; Nerry, F. Comparison of the thermal sensors of SEVIRI and MODIS for LST mapping. In Thermal Infrared Remote Sensing; Remote Sensing and Digital Image Processing Book Series; Kuenzer, C., Dech, S., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 17, pp. 233–252. [Google Scholar]
- Dash, P.; Göttsche, F.-M.; Olesen, F.; Fischer, H. Retrieval of land surface temperature and emissivity from satellite data: Physics, theoretical limitations and current methods. J. Indian Soc. Remote Sens. 2001, 29, 23–30. [Google Scholar] [CrossRef]
- Li, Z.-L.; Becker, F. Feasibility of land surface temperature and emissivity determination from AVHRR data. Remote Sens. Environ. 1993, 43, 67–85. [Google Scholar] [CrossRef]
- Schmugge, T.; French, A.; Ritchie, J.C.; Rango, A.; Pelgrum, H. Temperature and emissivity separation from multispectral thermal infrared observations. Remote Sens. Environ. 2002, 79, 189–198. [Google Scholar] [CrossRef]
- Sobrino, J.; Jimenez Munoz, J.; Verhoef, W. Canopy directional emissivity: Comparison between models. Remote Sens. Environ. 2005, 99, 304–314. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N.; Li, Z. A comparative study of land surface emissivity retrieval from NOAA data. Remote Sens. Environ. 2001, 75, 256–266. [Google Scholar] [CrossRef]
- Liu, X.; Tang, B.; Yan, G.; Li, Z.-L.; Liang, S. Retrieval of global orbit drift corrected land surface temperature from long-term AVHRR data. Remote Sens. 2019, 11, 2843. [Google Scholar] [CrossRef] [Green Version]
- Ghent, D.; Veal, K.; Trent, T.; Dodd, E.; Sembhi, H.; Remedios, J. A new approach to defining uncertainties for MODIS land surface temperature. Remote Sens. 2019, 11, 1021. [Google Scholar] [CrossRef] [Green Version]
- Becker, F.; Li, Z.L. Toward a local split window method over land surface. Int. J. Remote Sens. 1990, 11, 369–393. [Google Scholar] [CrossRef]
- Gillespie, A.; Rokugawa, S.; Matsunaga, T.; Steven Cothern, J.; Hook, S.; Kahle, A.B. A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1113–1126. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Sobrino, J.A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. J. Geophys. Res. 2003, 109, 8112. [Google Scholar] [CrossRef] [Green Version]
- Price, J.C. Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect. Remote Sens. Environ. 1983, 13, 353–361. [Google Scholar] [CrossRef]
- Qin, Z.; Karnieli, A.; Berliner, P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt border region. Int. J. Remote Sens. 2001, 22, 3719–3746. [Google Scholar] [CrossRef]
- Jiménez-Muñoz, J.C.; Cristóbal, J.; Sobrino, J.A.; Sòria, G.; Ninyerola, M.; Pons, X. Revision of the single-channel algorithm for land surface temperature retrieval from Landsat thermal-infrared data. IEEE Trans. Geosci. Remote Sens. 2009, 47, 339–349. [Google Scholar] [CrossRef]
- Mao, K.; Qin, Z.; Shi, J.; Gong, P. A practical split-window algorithm for retrieving land-surface temperature from MODIS data. Int. J. Remote Sens. 2005, 26, 3181–3204. [Google Scholar] [CrossRef]
- Yu, X.; Guo, X.; Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS-comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sens. 2014, 6, 9829–9852. [Google Scholar] [CrossRef] [Green Version]
- Wan, Z.; Li, Z.-L. Radiance-based validation of the V5 MODIS land-surface temperature product. Int. J. Remote Sens. 2008, 29, 5373–5395. [Google Scholar] [CrossRef]
- Peres, L.F.; Sobrino, J.A.; Libonati, R.; Jiménez-Muñoz, J.C.; Dacamara, C.C.; Romaguera, M. Validation of a temperature emissivity separation hybrid method from airborne hyperspectral scanner data and ground measurements in the SEN2FLEX field campaign. Int. J. Remote Sens. 2008, 29, 7251–7268. [Google Scholar] [CrossRef] [Green Version]
- Coll, C.; Caselles, V.; Galve, J.; Valor, E.; Niclos, R.; Sanchez, J.; Rivas, R. Ground measurements for the validation of land surface temperatures derived from AATSR and MODIS data. Remote Sens. Environ. 2005, 97, 288–300. [Google Scholar] [CrossRef]
- Wan, Z.; Zhang, Y.; Zhang, Q.; Li, Z.-L. Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens. Environ. 2002, 83, 163–180. [Google Scholar] [CrossRef]
- Sabol, D.E., Jr.; Gillespie, A.R.; Abbott, E.; Yamada, G. Field validation of the ASTER temperature–emissivity separation algorithm. Remote Sens. Environ. 2009, 113, 2328–2344. [Google Scholar] [CrossRef]
- Meng, X.; Cheng, J.; Zhao, S.; Liu, S.; Yao, Y. Estimating land surface temperature from Landsat-8 data using the NOAA JPSS enterprise algorithm. Remote Sens. 2019, 11, 155. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X. Validation of the generalized single-channel algorithm using Landsat 8 imagery and SURFRAD ground measurements. Remote Sens. Lett. 2016, 7, 810–816. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, Z.; Hu, T.; Liu, X. A practical single-channel algorithm for land surface temperature retrieval: Application to Landsat series data. J. Geophys. Res. Atmos. 2019, 124, 299–316. [Google Scholar] [CrossRef]
- Malakar, N.K.; Hulley, G.C.; Hook, S.J.; Laraby, K.; Cook, M.; Schott, J.R. An operational land surface temperature product for Landsat thermal data: Methodology and validation. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5717–5735. [Google Scholar] [CrossRef]
- Wang, S.; He, L.; Hu, W. A temperature and emissivity separation algorithm for Landsat-8 thermal infrared sensor data. Remote Sens. 2015, 7, 9904–9927. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; He, G.; Wang, M.; Long, T.; Wang, G.; Zhang, X.; Jiao, W. Towards an operational method for land surface temperature retrieval from Landsat 8 data. Remote Sens. Lett. 2016, 7, 279–288. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jimenez-Muoz, J.C.; Soria, G.; Romaguera, M.; Guanter, L.; Moreno, J.; Plaza, A.; Martinez, P. Land surface emissivity retrieval from different VNIR and TIR sensors. IEEE Trans. Geosci. Remote Sens. 2008, 46, 316–327. [Google Scholar] [CrossRef]
- Sekertekin, A. Validation of physical radiative transfer equation-based land surface temperature using Landsat 8 satellite imagery and SURFRAD in-situ measurements. J. Atmos. Solar Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Skokovic, D.; Sobrino, J.A.; Jiménez Muñoz, J.C.; Soria, G.; Julien, Y.; Mattar, C.; Cristóbal, J. Calibration and validation of land surface temperature for Landsat8-TIRS sensor TIRS Landsat-8 characteristics. L. Prod. Valid. Evol. ESA/ESRIN 2014, 27. Available online: https://earth.esa.int/documents/700255/2126408/ESA_Lpve_Sobrino_2014a.pdf (accessed on 11 January 2020).
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a land surface temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef] [Green Version]
- Cook, M. Atmospheric Compensation for a Landsat Land Surface Temperature Product. Ph.D. Thesis, Rochester Institute of Technology, Rochester, NY, USA, 2014. [Google Scholar]
- Augustine, J.A.; DeLuisi, J.J.; Long, C.N. SURFRAD—A national surface radiation budget network for atmospheric research. Bull. Am. Meteorol. Soc. 2000, 81, 2341–2357. [Google Scholar] [CrossRef] [Green Version]
- Ndossi, M.; Avdan, U. Inversion of land surface temperature (LST) using terra ASTER data: A comparison of three algorithms. Remote Sens. 2016, 8, 993. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Yu, Y.; Sun, D.; Tarpley, D.; Zhan, X.; Chiu, L. Evaluation of 10 year AQUA/MODIS land surface temperature with SURFRAD observations. Int. J. Remote Sens. 2014, 35, 830–856. [Google Scholar] [CrossRef]
- Heidinger, A.K.; Laszlo, I.; Molling, C.C.; Tarpley, D. Using SURFRAD to verify the NOAA single-channel land surface temperature algorithm. J. Atmos. Ocean. Technol. 2013, 30, 2868–2884. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Y.; Yu, P.; Wang, H.; Rao, Y. Enterprise LST algorithm development and its evaluation with NOAA 20 data. Remote Sens. 2019, 11, 2003. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.C.; Trigo, I.; Macedo, J. GIO Global Land Component—Lot I “Operation of the Global Land Component”. Quality Assessment Report. 2015. Available online: https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_VR_BAV1_I2.01.pdf (accessed on 1 December 2019).
- Jiménez, C.; Prigent, C.; Ermida, S.L.; Moncet, J.-L. Inversion of AMSR-E observations for land surface temperature estimation: 1. Methodology and evaluation with station temperature. J. Geophys. Res. Atmos. 2017, 122, 3330–3347. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from Landsat TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Pedelty, J.; Devadiga, S.; Masuoka, E.; Brown, M.; Pinzon, J.; Tucker, C.; Vermote, E.; Prince, S.; Nagol, J.; Justice, C.; et al. Generating a long-term land data record from the AVHRR and MODIS instruments. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 1021–1025. [Google Scholar]
- Coll, C.; Valor, E.; Galve, J.M.; Mira, M.; Bisquert, M.; García-Santos, V.; Caselles, E.; Caselles, V. Long-term accuracy assessment of land surface temperatures derived from the advanced along-track scanning radiometer. Remote Sens. Environ. 2012, 116, 211–225. [Google Scholar] [CrossRef]
- Niclòs, R.; Galve, J.M.; Valiente, J.A.; Estrela, M.J.; Coll, C. Accuracy assessment of land surface temperature retrievals from MSG2-SEVIRI data. Remote Sens. Environ. 2011, 115, 2126–2140. [Google Scholar] [CrossRef]
- Sun, D.; Pinker, R.T. Estimation of land surface temperature from a geostationary operational environmental satellite (GOES-8). J. Geophys. Res. 2003, 108, 4326. [Google Scholar] [CrossRef]
- USGS. Landsat 8 OLI and TIRS Calibration Notices. Available online: https://www.usgs.gov/land-resources/nli/landsat/landsat-8-oli-and-tirs-calibration-notices (accessed on 24 July 2019).
- Li, S.; Jiang, G.-M. Land surface temperature retrieval from Landsat-8 data with the generalized split-window algorithm. IEEE Access 2018, 6, 18149–18162. [Google Scholar] [CrossRef]
- Vlassova, L.; Perez-Cabello, F.; Nieto, H.; Martín, P.; Riaño, D.; de la Riva, J. Assessment of methods for land surface temperature retrieval from Landsat-5 TM images applicable to multiscale tree-grass ecosystem modeling. Remote Sens. 2014, 6, 4345–4368. [Google Scholar] [CrossRef] [Green Version]
- Renard, F.; Alonso, L.; Fitts, Y.; Hadjiosif, A.; Comby, J. Evaluation of the effect of urban redevelopment on surface urban heat islands. Remote Sens. 2019, 11, 299. [Google Scholar] [CrossRef] [Green Version]
- Walawender, J.P.; Szymanowski, M.; Hajto, M.J.; Bokwa, A. Land surface temperature patterns in the urban agglomeration of Krakow (Poland) derived from Landsat-7/ETM+ data. Pure Appl. Geophys. 2014, 171, 913–940. [Google Scholar] [CrossRef] [Green Version]
- Peres, L.F.; DaCamara, C.C. Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1834–1844. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Raissouni, N. Toward remote sensing methods for land cover dynamic monitoring: Application to Morocco. Int. J. Remote Sens. 2000, 21, 353–366. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Van de Griend, A.A.; Owe, M. On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. 1993, 14, 1119–1131. [Google Scholar] [CrossRef]
- Snyder, W.C.; Wan, Z.; Zhang, Y.; Feng, Y.-Z. Classification-based emissivity for land surface temperature measurement from space. Int. J. Remote Sens. 1998, 19, 2753–2774. [Google Scholar] [CrossRef]
- Sobrino, J.A.; El Kharraz, J.; Li, Z.-L. Surface temperature and water vapour retrieval from MODIS data. Int. J. Remote Sens. 2003, 24, 5161–5182. [Google Scholar] [CrossRef]
- Cheng, J.; Liang, S. Estimating the broadband longwave emissivity of global bare soil from the MODIS shortwave albedo product. J. Geophys. Res. Atmos. 2014, 119, 614–634. [Google Scholar] [CrossRef]
- Tang, B.-H.; Shao, K.; Li, Z.-L.; Wu, H.; Tang, R. An improved NDVI-based threshold method for estimating land surface emissivity using MODIS satellite data. Int. J. Remote Sens. 2015, 36, 4864–4878. [Google Scholar] [CrossRef]
- Watson, K. Two-temperature method for measuring emissivity. Remote Sens. Environ. 1992, 42, 117–121. [Google Scholar] [CrossRef]
- Peres, L.F.; DaCamara, C.C. Land surface temperature and emissivity estimation based on the two-temperature method: Sensitivity analysis using simulated MSG/SEVIRI data. Remote Sens. Environ. 2004, 91, 377–389. [Google Scholar] [CrossRef]
- Peres, L.F.; Dacamara, C.C.; Trigo, I.F.; Freitas, S.C. Synergistic use of the two-temperature and split-window methods for land-surface temperature retrieval. Int. J. Remote Sens. 2010, 31, 4387–4409. [Google Scholar] [CrossRef]
- Barducci, A.; Pippi, I. Temperature and emissivity retrieval from remotely sensed images using the “grey body emissivity” method. IEEE Trans. Geosci. Remote Sens. 1996, 34, 681–695. [Google Scholar] [CrossRef]
- Borel, C.C. Iterative retrieval of surface emissivity and temperature for a hyperspectral sensor. In Proceedings of the JPL Workshop/Remote Sensing of Land Surface Emissivity, Pasadena, CA, USA, 6–8 May 1997. [Google Scholar]
- Borel, C. Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data. Int. J. Remote Sens. 2008, 29, 5029–5045. [Google Scholar] [CrossRef]
- Jaggi, S.; Quattrochi, D.; Baskin, R. An algorithm for the estimation of bounds on the emissivity and temperatures from thermal multispectral airborne remotely sensed data. In Proceedings of the Summaries of the Third Annual JPL Airborne Geoscience Workshop, Pasadena, CA, USA, 1–5 June 1992; pp. 22–24. [Google Scholar]
- Kahle, A.B.; Madura, D.P.; Soha, J.M. Middle infrared multispectral aircraft scanner data: Analysis for geological applications. Appl. Opt. 1980, 19, 2279–2290. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Petitcolin, F.; Renhua, Z. A physically based algorithm for land surface emissivity retrieval from combined mid-infrared and thermal infrared data. Sci. China Ser. E-Technol. Sci. 2000, 43, 23–33. [Google Scholar] [CrossRef]
- Petitcolin, F.; Vermote, E. Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sens. Environ. 2002, 83, 112–134. [Google Scholar] [CrossRef]
- Jiang, G.-M.; Li, Z.-L.; Nerry, F. Land surface emissivity retrieval from combined mid-infrared and thermal infrared data of MSG-SEVIRI. Remote Sens. Environ. 2006, 105, 326–340. [Google Scholar] [CrossRef]
- Wan, Z.; Li, Z.-L. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data. IEEE Trans. Geosci. Remote Sens. 1997, 35, 980–996. [Google Scholar] [CrossRef]
- Ma, X.L.; Wan, Z.; Moeller, C.C.; Menzel, W.P.; Gumley, L.E.; Zhang, Y. Retrieval of geophysical parameters from moderate resolution imaging spectroradiometer thermal infrared data: Evaluation of a two-step physical algorithm. Appl. Opt. 2000, 39, 3537–3550. [Google Scholar] [CrossRef]
- Ma, X.L.; Wan, Z.; Moeller, C.C.; Menzel, W.P.; Gumley, L.E. Simultaneous retrieval of atmospheric profiles, land-surface temperature, and surface emissivity from moderate-resolution imaging spectroradiometer thermal infrared data: Extension of a two-step physical algorithm. Appl. Opt. 2002, 41, 909–924. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Weisz, E.; Zhou, D.K. Physical retrieval of surface emissivity spectrum from hyperspectral infrared radiances. Geophys. Res. Lett. 2007, 34, 4–9. [Google Scholar] [CrossRef] [Green Version]
- Carlson, T.N.; Ripley, D.A. On the relation between NDVI, fractional vegetation cover, and leaf area index. Remote Sens. Environ. 1997, 62, 241–252. [Google Scholar] [CrossRef]
- Wang, K.; Wan, Z.; Wang, P.; Sparrow, M.; Liu, J.; Zhou, X.; Haginoya, S. Estimation of surface long wave radiation and broadband emissivity using moderate resolution imaging spectroradiometer (MODIS) land surface temperature/emissivity products. J. Geophys. Res. 2005, 110, D11109. [Google Scholar] [CrossRef]
- Wang, K.; Liang, S. Evaluation of ASTER and MODIS land surface temperature and emissivity products using long-term surface longwave radiation observations at SURFRAD sites. Remote Sens. Environ. 2009, 113, 1556–1565. [Google Scholar] [CrossRef]
- Tukey, J.W. Box-and-whisker plots. In Exploratory Data Analysis; Pearson: Reading, MA, USA, 1977; pp. 39–43. ISBN 0201076160. [Google Scholar]
- Sameen, M.I.; Kubaisy, M.A. Automatic surface temperature mapping in ArcGIS using Landsat-8 TIRS and ENVI tools case study: Al Habbaniyah Lake. J. Environ. Earth Sci. 2014, 4, 12–17. [Google Scholar]
- Isaya Ndossi, M.; Avdan, U. Application of open source coding technologies in the production of land surface temperature (LST) maps from Landsat: A PyQGIS plugin. Remote Sens. 2016, 8, 413. [Google Scholar] [CrossRef] [Green Version]
- Walawender, J.P.; Hajto, M.J.; Iwaniuk, P. A new ArcGIS toolset for automated mapping of land surface temperature with the use of LANDSAT satellite data. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 4371–4374. [Google Scholar]
- Zhang, J.; Wang, Y.; Li, Y. A C++ program for retrieving land surface temperature from the data of Landsat TM/ETM+ band6. Comput. Geosci. 2006, 32, 1796–1805. [Google Scholar] [CrossRef]
- Tardy, B.; Rivalland, V.; Huc, M.; Hagolle, O.; Marcq, S.; Boulet, G. A software tool for atmospheric correction and surface temperature estimation of Landsat infrared thermal data. Remote Sens. 2016, 8, 696. [Google Scholar] [CrossRef] [Green Version]
- Oguz, H. LST calculator: A program for retrieving land surface temperature from Landsat TM/ETM+ imagery. Environ. Eng. Manag. J. 2013, 12, 549–555. [Google Scholar] [CrossRef]
- Sun, Q.; Tan, J.; Xu, Y. An ERDAS image processing method for retrieving LST and describing urban heat evolution: A case study in the Pearl River Delta Region in South China. Environ. Earth Sci. 2009, 59, 1047–1055. [Google Scholar] [CrossRef]
- Oltra-Carrió, R.; Sobrino, J.A.; Franch, B.; Nerry, F. Land surface emissivity retrieval from airborne sensor over urban areas. Remote Sens. Environ. 2012, 123, 298–305. [Google Scholar] [CrossRef]
- Neinavaz, E.; Skidmore, A.K.; Darvishzadeh, R. Effects of prediction accuracy of the proportion of vegetation cover on land surface emissivity and temperature using the NDVI threshold method. Int. J. Appl. Earth Obs. Geoinf. 2020, 85, 101984. [Google Scholar] [CrossRef]
- Cao, B.; Liu, Q.; Du, Y.; Roujean, J.-L.; Gastellu-Etchegorry, J.-P.; Trigo, I.F.; Zhan, W.; Yu, Y.; Cheng, J.; Jacob, F.; et al. A review of earth surface thermal radiation directionality observing and modeling: Historical development, current status and perspectives. Remote Sens. Environ. 2019, 232, 111304. [Google Scholar] [CrossRef]
- Trigo, I.F.; Monteiro, I.T.; Olesen, F.; Kabsch, E. An assessment of remotely sensed land surface temperature. J. Geophys. Res. 2008, 113, D17108. [Google Scholar] [CrossRef]
- Zhou, J.; Li, M.; Liu, S.; Jia, Z.; Ma, Y. Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sens. 2015, 7, 7126–7156. [Google Scholar] [CrossRef] [Green Version]
- Guillevic, P.; Göttsche, F.; Nickeson, J.; Hulley, G.; Ghent, D.; Yu, Y.; Trigo, I.; Hook, S.; Sobrino, J.A.; Remedios, J.; et al. Land Surface Temperature Product Validation Best Practice Protocol; Guillevic, P., Göttsche, F., Nickeson, J., Román, M., Eds.; Version 1.1; CEOS WGCV Land Product Validation Subgroup: Greenbelt, MD, USA, 2018. [Google Scholar]
- Hook, S.J.; Vaughan, R.G.; Tonooka, H.; Schladow, S.G. Absolute radiometric in-flight validation of mid infrared and thermal infrared data from ASTER and MODIS on the terra spacecraft using the Lake Tahoe, CA/NV, USA, automated validation site. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1798–1807. [Google Scholar] [CrossRef]
- Guillevic, P.C.; Biard, J.C.; Hulley, G.C.; Privette, J.L.; Hook, S.J.; Olioso, A.; Göttsche, F.M.; Radocinski, R.; Román, M.O.; Yu, Y.; et al. Validation of land surface temperature products derived from the visible infrared imaging radiometer suite (VIIRS) using ground-based and heritage satellite measurements. Remote Sens. Environ. 2014, 154, 19–37. [Google Scholar] [CrossRef]
- Sobrino, J.; Skoković, D. Permanent stations for calibration/validation of thermal sensors over Spain. Data 2016, 1, 10. [Google Scholar] [CrossRef]
- Göttsche, F.-M.; Olesen, F.-S.; Trigo, I.; Bork-Unkelbach, A.; Martin, M. Long term validation of land surface temperature retrieved from MSG/SEVIRI with continuous in-situ measurements in Africa. Remote Sens. 2016, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Emami, H.; Mojaradi, B.; Safari, A. A new approach for land surface emissivity estimation using LDCM data in semi-arid areas: Exploitation of the ASTER spectral library data set. Int. J. Remote Sens. 2016, 37, 5060–5085. [Google Scholar] [CrossRef]
- Dozier, J.; Warren, S.G. Effect of viewing angle on the infrared brightness temperature of snow. Water Resour. Res. 1982, 18, 1424–1434. [Google Scholar] [CrossRef] [Green Version]
- USGS. Landsat 7 (L7) Data Users Handbook. Available online: https://prd-wret.s3-us-west-2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-1927_L7_Data_Users_Handbook-v2.pdf (accessed on 5 December 2019).
- Zanter, K. Landsat 8 (L8) Data Users Handbook; EROS: Sioux Falls, SD, USA, 2019. [Google Scholar]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477), Toulouse, France, 21–25 July 2003; pp. 3014–3016. [Google Scholar]
- Barsi, J.A.; Schott, J.R.; Palluconi, F.D.; Hook, S.J. Validation of a web-based atmospheric correction tool for single thermal band instruments. In Proceedings of the Earth Observing Systems X, San Diego, CA, USA, 31 July–4 August 2005; p. 58820E. [Google Scholar]
- Liu, L.; Zhang, Y. Urban heat island analysis using the Landsat TM data and ASTER data: A case study in Hong Kong. Remote Sens. 2011, 3, 1535–1552. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Lu, Y.; Yao, Y. Comparison of three algorithms for the retrieval of land surface temperature from Landsat 8 images. Sensors 2019, 19, 5049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Qin, Z.; Song, C.; Tu, L.; Karnieli, A.; Zhao, S. An improved mono-window algorithm for land surface temperature retrieval from Landsat 8 thermal infrared sensor data. Remote Sens. 2015, 7, 4268–4289. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Mao, K.; Mu, F.; Shi, J.; Yang, J.; Li, Z.; Qin, Z. A split window algorithm for retrieving land surface temperature from FY-3D MERSI-2 data. Remote Sens. 2019, 11, 2083. [Google Scholar] [CrossRef] [Green Version]
Site Name | Site Code | Latitude | Longitude | Elevation | Land Cover Type |
---|---|---|---|---|---|
Bondville, Illinois | BND | 40.05° N | 88.37° W | 230 m | Cropland |
Desert Rock, Nevada | DRA | 36.62° N | 116.02° W | 1007 m | Open Shrub-lands |
Fort Peck, Montana | FPK | 48.31° N | 105.10° W | 634 m | Grassland |
Goodwin Creek, Mississippi | GWN | 34.26° N | 89.87° W | 98 m | Cropland/Natural Vegetation Mosaic |
Penn. State Univ., Pennsylvania | PSU | 40.72° N | 77.93° W | 376 m | Cropland |
TIR Bands | Range | a | B (K) |
---|---|---|---|
Band 10 | −10–20 °C | 0.4087 | −55.58 |
20–50 °C | 0.4464 | −66.61 | |
Band 11 | −10–20 °C | 0.4442 | −59.85 |
20–50 °C | 0.4831 | −71.23 |
Category | Surface Emissivity Determination Methods | References | Platform |
---|---|---|---|
Semi-Empirical Methods (SEMs) | Classification-based emissivity method (CBEM) | [80] | MSG1/SEVIRI |
[84] | MODIS | ||
NDVI-based emissivity method (NBEM) | [83] | NOAA/AVHRR Landsat TM | |
[82] | NOAA/AVHRR Landsat TM | ||
[81] | NOAA/AVHRR | ||
[85] | TERRA/MODIS | ||
[58] | ENVISAT/AATSR MSG1/SEVIRI Landsat TM | ||
[60] | Landsat 8 | ||
[46] | Landsat 8 | ||
[86] | MODIS | ||
[87] | TERRA/MODIS | ||
[76] | Landsat 8 | ||
Multi-channel TES methods | The two-temperature method (TTM) | [88] | TIMS |
[89] | MSG/SEVIRI | ||
[90] | MSG/SEVIRI | ||
Grey-body emissivity (GBE) method | [91] | TIMS | |
The iterative spectrally smooth temperature emissivity separation (ISSTES) method | [92,93] | Hyperspectral infrared data | |
The emissivity bounds method (EBM) | [94] | TIMS | |
Reference channel method (RCM) | [95] | multispectral aircraft scanner data | |
TES method | [40] | ASTER | |
[58] | ASTER Airborne Hyperspectral Scanner (AHS) | ||
Temperature-independent spectral indices (TISI) based methods | [33] | NOAA/AVHRR | |
[96] | NOAA/AVHRR | ||
[97] | TERRA/MODIS | ||
[98] | MSG-SEVIRI | ||
Physically-based methods (PBMs) | Physics-based day/night (D/N) method | [99] | TERRA/MODIS |
Two-step physical retrieval method (TSRM) | [100,101] | TERRA/MODIS | |
[102] | AQUA/AIRS |
Sensor | LSE Equations | Reference |
---|---|---|
Landsat 5 TM and 7 ETM+ (Band 6) | Sobrino et al. [58] | |
Landsat 8 TIR1 (Band 10) | Skoković et al. [60] | |
Landsat 8 TIR1 (Band 11) | Skoković et al. [60] | |
Landsat 8 TIR1 (Band 10) | Yu et al. [46] | |
Landsat 8 TIR1 (Band 11) | Yu et al. [46] | |
Landsat 8 TIR1 (Band 10) | Li and Jiang [76] | |
Landsat 8 TIR1 (Band 11) | Li and Jiang [76] |
Landsat Mission | Emissivity Method | LST Retrieval Method | RMSE (K) |
---|---|---|---|
Landsat 5 TM | Van De Griend & Owe (1993) | MWA | 4.89 |
RTE | 4.96 | ||
SCA | 5.22 | ||
Valor & Caselles (1996) | MWA | 2.93 | |
RTE | 3.25 | ||
SCA | 3.46 | ||
Sobrino et al. (2008) | MWA | 2.41 | |
RTE | 2.35 | ||
SCA | 2.47 |
Landsat Mission | Emissivity Method | LST Retrieval Method | RMSE (K) |
---|---|---|---|
Landsat 7 ETM+ | Van De Griend & Owe (1993) | MWA | 9.10 |
RTE | 8.18 | ||
SCA | 9.51 | ||
Valor & Caselles (1996) | MWA | 4.64 | |
RTE | 4.95 | ||
SCA | 5.25 | ||
Sobrino et al. (2008) | MWA | 2.24 | |
RTE | 2.48 | ||
SCA | 2.77 |
Landsat Mission | Emissivity Method | LST Retrieval Method | RMSE (K) |
---|---|---|---|
Landsat 8 OLI/TIRS | VanDeGriend & Owe (1993) | MWA | 4.24 |
RTE | 4.28 | ||
SCA | 4.53 | ||
Valor & Caselles (1996) | MWA | 5.16 | |
RTE | 4.21 | ||
SCA | 5.11 | ||
Sobrino et al. (2008) | MWA | 2.52 | |
RTE | 2.85 | ||
SCA | 2.94 | ||
Skoković et al. (2014) | MWA | 2.73 | |
RTE | 3.01 | ||
SCA | 3.11 | ||
SWA | 2.79 | ||
Yu et al. (2014) | MWA | 2.79 | |
RTE | 3.07 | ||
SCA | 3.18 | ||
SWA | 3.02 | ||
Li & Jiang (2018) | MWA | 2.85 | |
RTE | 3.11 | ||
SCA | 3.22 | ||
SWA | 2.94 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sekertekin, A.; Bonafoni, S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sens. 2020, 12, 294. https://doi.org/10.3390/rs12020294
Sekertekin A, Bonafoni S. Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing. 2020; 12(2):294. https://doi.org/10.3390/rs12020294
Chicago/Turabian StyleSekertekin, Aliihsan, and Stefania Bonafoni. 2020. "Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation" Remote Sensing 12, no. 2: 294. https://doi.org/10.3390/rs12020294
APA StyleSekertekin, A., & Bonafoni, S. (2020). Land Surface Temperature Retrieval from Landsat 5, 7, and 8 over Rural Areas: Assessment of Different Retrieval Algorithms and Emissivity Models and Toolbox Implementation. Remote Sensing, 12(2), 294. https://doi.org/10.3390/rs12020294