Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery
Abstract
:1. Introduction
2. Case Study Area and Data
2.1. Case Study Area
2.2. Data Collections
2.2.1. Nighttime Satellite Imagery
2.2.2. Population, Settlement, and Agricultural Data
3. Methods
3.1. Data Pre-Processing
3.2. Model and Simulation of GDP
4. Results and Discussion
4.1. Results
4.2. Data Comparisons
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
District | Region | Rural GDP (Million US $) | Urban GDP (Million US $) | GDP Per Capita (US $) |
---|---|---|---|---|
Abim | Karamoja | 5.83 | 1.78 | 128 |
Adjumani | West Nile | 61.24 | 7.04 | 150 |
Agago | Northern | 24.93 | 5.87 | 86 |
Alebtong | Northern | 16.76 | 0.57 | 68 |
Amolatar | Northern | 18.28 | 0.00 | 127 |
Amudat | Karamoja | 12.15 | 0.39 | 90 |
Amuria | Eastern | 26.96 | 0.58 | 52 |
Amuru | Northern | 77.63 | 1.50 | 317 |
Apac | Northern | 91.21 | 6.85 | 247 |
Arua | West Nile | 101.15 | 75.17 | 202 |
Budaka | Eastern | 11.40 | 11.75 | 117 |
Bududa | Eastern | 40.40 | 5.43 | 244 |
Bugiri | Eastern | 34.84 | 29.08 | 122 |
Buhweju | South West | 32.30 | 1.03 | 275 |
Buikwe | Central | 19.06 | 354.35 | 769 |
Bukedea | Eastern | 29.75 | 4.59 | 160 |
Bukomansimbi | Central | 39.04 | 7.72 | 288 |
Bukwo | Eastern | 20.21 | 0.61 | 416 |
Bulambuli | Eastern | 18.62 | 10.10 | 177 |
Buliisa | Western | 12.96 | 0.00 | 145 |
Bundibugyo | Western | 27.62 | 11.14 | 126 |
Bushenyi | South West | 51.28 | 65.01 | 415 |
Busia | Eastern | 27.17 | 47.48 | 225 |
Butaleja | Eastern | 30.36 | 11.30 | 166 |
Butambala | Central | 15.55 | 22.58 | 297 |
Buvuma | Central | 5.24 | 0.00 | 84 |
Buyende | Eastern | 45.07 | 1.45 | 150 |
Dokolo | Northern | 29.06 | 2.88 | 153 |
Gomba | Central | 26.40 | 7.01 | 196 |
Gulu | Northern | 50.39 | 88.84 | 492 |
Hoima | Western | 58.47 | 77.40 | 209 |
Ibanda | South West | 82.68 | 29.75 | 408 |
Iganga | Eastern | 152.67 | 91.35 | 434 |
Isingiro | South West | 265.41 | 26.58 | 611 |
Jinja | Eastern | 35.28 | 625.23 | 1199 |
Kaabong | Karamoja | 29.53 | 0.00 | 59 |
Kabale | South West | 49.07 | 83.17 | 405 |
Kabarole | Western | 158.02 | 64.35 | 505 |
Kaberamaido | Eastern | 21.33 | 0.58 | 95 |
Kagadi | Western | 19.35 | 12.24 | 69 |
Kakumiro | Western | 20.64 | 5.78 | 120 |
Kalangala | Central | 3.71 | 5.48 | 112 |
Kaliro | Eastern | 27.21 | 52.22 | 338 |
Kalungu | Central | 38.59 | 36.48 | 401 |
Kampala | Kampala | 3.49 | 6269.64 | 3368 |
Kamuli | Eastern | 72.44 | 41.54 | 202 |
Kamwenge | Western | 79.47 | 7.38 | 233 |
Kanungu | South West | 65.78 | 12.77 | 304 |
Kapchorwa | Eastern | 19.82 | 10.31 | 226 |
Kasese | Western | 81.75 | 154.39 | 292 |
Katakwi | Eastern | 17.96 | 1.00 | 94 |
Kayunga | Central | 36.35 | 42.59 | 200 |
Kibaale | Western | 60.40 | 3.64 | 453 |
Kiboga | Central | 23.66 | 24.64 | 222 |
Kibuku | Eastern | 22.23 | 7.56 | 144 |
Kiruhura | South West | 97.11 | 18.07 | 336 |
Kiryandongo | Western | 34.40 | 46.36 | 223 |
Kisoro | South West | 36.26 | 20.47 | 230 |
Kitgum | Northern | 16.08 | 19.67 | 125 |
Koboko | West Nile | 12.62 | 0.00 | 44 |
Kole | Northern | 61.37 | 0.60 | 229 |
Kotido | Karamoja | 47.60 | 0.36 | 166 |
Kumi | Eastern | 23.84 | 7.97 | 110 |
Kween | Eastern | 15.53 | 0.00 | 136 |
Kyankwanzi | Central | 38.79 | 4.18 | 223 |
Kyegegwa | Western | 40.67 | 6.26 | 256 |
Kyenjojo | Western | 58.57 | 12.08 | 161 |
Lamwo | Northern | 14.09 | 0.00 | 71 |
Lira | Northern | 23.67 | 122.63 | 341 |
Luuka | Eastern | 89.09 | 10.04 | 351 |
Luwero | Central | 48.74 | 148.98 | 412 |
Lwengo | Central | 56.57 | 60.72 | 416 |
Lyantonde | Central | 25.06 | 21.85 | 424 |
Manafwa | Eastern | 44.38 | 21.34 | 154 |
Maracha | West Nile | 35.95 | 8.39 | 203 |
Masaka | Central | 47.82 | 230.47 | 1051 |
Masindi | Western | 32.44 | 49.78 | 187 |
Mayuge | Central | 37.38 | 89.07 | 232 |
Mbale | Eastern | 88.91 | 269.65 | 715 |
Mbarara | South West | 221.84 | 394.65 | 1311 |
Mitooma | South West | 48.82 | 4.98 | 262 |
Mityana | Central | 32.78 | 83.85 | 350 |
Moroto | Karamoja | 7.87 | 16.04 | 147 |
Moyo | West Nile | 16.49 | 3.63 | 34 |
Mpigi | Central | 35.96 | 298.05 | 1624 |
Mubende | Central | 215.47 | 125.19 | 489 |
Mukono | Central | 34.22 | 958.08 | 1654 |
Nakapiripirit | Karamoja | 20.27 | 0.00 | 102 |
Nakaseke | Central | 25.44 | 25.76 | 234 |
Nakasongola | Central | 69.35 | 12.77 | 481 |
Namayingo | Eastern | 20.75 | 0.00 | 80 |
Namutumba | Eastern | 48.36 | 4.40 | 217 |
Napak | Karamoja | 12.25 | 0.00 | 51 |
Nebbi | West Nile | 45.68 | 12.33 | 151 |
Ngora | Eastern | 13.91 | 6.47 | 105 |
Ntoroko | Western | 6.09 | 3.83 | 92 |
Ntungamo | South West | 240.62 | 50.98 | 552 |
Nwoya | Northern | 49.38 | 1.19 | 802 |
Omoro | Northern | 27.45 | 0.19 | 183 |
Otuke | Northern | 7.59 | 0.00 | 78 |
Oyam | Northern | 96.58 | 18.18 | 251 |
Pader | Northern | 21.25 | 4.12 | 92 |
Pallisa | Eastern | 41.43 | 10.14 | 124 |
Rakai | Central | 94.92 | 42.93 | 275 |
Rubanda | South West | 17.26 | 0.35 | 85 |
Rubirizi | South West | 30.73 | 4.69 | 257 |
Rukungiri | South West | 76.06 | 22.50 | 278 |
Serere | Eastern | 108.12 | 1.41 | 312 |
Sheema | South West | 44.65 | 20.44 | 256 |
Sironko | Eastern | 24.83 | 21.47 | 174 |
Soroti | Eastern | 98.46 | 72.86 | 444 |
Ssembabule | Central | 69.02 | 12.11 | 341 |
Tororo | Eastern | 136.89 | 119.59 | 466 |
Wakiso | Central | 32.00 | 4262.30 | 2496 |
Yumbe | West Nile | 63.40 | 0.00 | 91 |
Zombo | West Nile | 28.55 | 7.90 | 148 |
References
- Deb, S. Gap between GDP and HDI: Are the Rich Country Experiences Different from the Poor? In Proceedings of the IARIW-OECD Special Conference, Paris, France, 16–17 August 2015. [Google Scholar]
- World Population Prospects: The 2017 Revision, Key Findings and Advance Tables; Working Paper No. ESA/P/WP/248; United Nations, Department of Economic and Social Affairs, Population Division: Rome, Italy, 2017.
- Clark, J.I.; Rhind, D.W. Population data and global environmental change; International Social Science Council and UNESCO: Paris, France, 1992. [Google Scholar]
- Rose, A.N.; Bright, E.A. The LandScan Global Population Distribution Project: Current State of the Art and Prospective Innovation; Oak Ridge National Lab. (ORNL): Oak Ridge, TN, USA, 2014.
- Henderson, J.V.; Storeygard, A.; Weil, D.N. Measuring Economic Growth from Outer Space. Am. Econ. Rev. Nashv. 2012, 102, 994–1028. [Google Scholar] [CrossRef] [Green Version]
- Welch, R. Monitoring urban population and energy utilization patterns from satellite Data. Remote Sens. Environ. 1980, 9, 1–9. [Google Scholar] [CrossRef]
- Welch, R.; Zupko, S. Urbanized area energy-utilization patterns from DMSP data. Photogramm. Eng. Remote Sens. 1980, 46, 201–207. [Google Scholar]
- Baugh, K.; Elvidge, C.D.; Ghosh, T.; Ziskin, D. Development of a 2009 stable lights product using DMSP-OLS data. Proc. Asia Pac. Adv. Netw. 2010, 30, 114–130. [Google Scholar] [CrossRef]
- Hillger, D.; Kopp, T.; Lee, T.; Lindsey, D.; Seaman, C.; Miller, S.; Solbrig, J.; Kidder, S.; Bachmeier, S.; Jasmin, T. First-light imagery from Suomi NPP VIIRS. Bull. Am. Meteorol. Soc. 2013, 94, 1019–1029. [Google Scholar] [CrossRef]
- Agriculture in Sub-Saharan Africa: Prospects and challenges for the next decade. In OECD-FAO Agricultural Outlook 2016–2025; OECD: Paris, France, 2016; pp. 59–95. ISBN 978-92-64-25322-3.
- Bundervoet, T.; Maiyo, L.; Sanghi, A. Bright Lights, Big Cities: Measuring National and Subnational Economic Growth in Africa from Outer Space, with an Application to Kenya and Rwanda; The World Bank: Washington, DC, USA, 2015. [Google Scholar]
- Uganda Bureau of Statistics. Uganda Census of Agriculture 2008/2009, Volume IV: Crop Area and Production Report. Uganda Bureau of Statistics 2010; Uganda Bureau of Statistics: Kampala, Uganda, 2010. [Google Scholar]
- Uganda Bureau of Statistics. Uganda Demographic and Health Survey 2016/17; Uganda Bureau of Statistics: Kampala, Uganda, 2016. [Google Scholar]
- Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C. Why VIIRS data are superior to DMSP for mapping nighttime lights. Proc. Asia Pac. Adv. Netw. 2013, 35, 62–69. [Google Scholar] [CrossRef]
- Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J. Evaluating the ability of NPP-VIIRS nighttime light data to estimate the gross domestic product and the electric power consumption of China at multiple scales: A comparison with DMSP-OLS Data. Remote Sens. 2014, 6, 1705–1724. [Google Scholar] [CrossRef]
- Pesaresi, M.; Syrris, V.; Julea, A. A new method for earth observation data analytics based on symbolic machine learning. Remote Sens. 2016, 8, 399. [Google Scholar] [CrossRef]
- Uganda Bureau of Statistics. A Summary Report of the National Livestock Census, 2008; Uganda Bureau of Statistics: Kampala, Uganda, 2009. [Google Scholar]
- Food and Agriculture Organization Statistical Databases; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012.
- Cotton Development Organisation. Cotton Development Organisation Annual Report 2009–2010; Cotton Development Organisation: Kampala, Uganda, 2010. [Google Scholar]
- Uganda Bureau of Statistics. National Population and Housing Census 2014, Subcounty Report—Northern Region; Uganda Bureau of Statistics: Kampala, Uganda, 2014. [Google Scholar]
- Uganda Bureau of Statistics. National Population and Housing Census 2014, Main Report; Uganda Bureau of Statistics: Kampala, Uganda, 2014. [Google Scholar]
- Coffee Producing Areas of Uganda. Available online: https://www.geogecko.com/blog/ugandacoffeemap/ (accessed on 27 August 2018).
- FIT Insights Group Limited. Available online: https://fitinsightsgroup.com/uganda-2/ (accessed on 27 August 2018).
- Uganda Coffee Development Authority. Coffee Price Trend 1992–2015; Uganda Coffee Development Authority: Kampala, Uganda, 2015.
- Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens. 2013, 5, 3057–3081. [Google Scholar] [CrossRef]
- Ghosh, T.L.; Powell, R.D.; Elvidge, C.E.; Baugh, K.C.; Sutton, P.; Anderson, S. Shedding Light on the Global Distribution of Economic Activity. Open Geogr. J. 2010, 3, 147–160. [Google Scholar]
- Letu, H.; Hara, M.; Yagi, H.; Naoki, K.; Tana, G.; Nishio, F.; Shuhei, O. Estimating energy consumption from night-time DMPS/OLS imagery after correcting for saturation effects. Int. J. Remote Sens. 2010, 31, 4443–4458. [Google Scholar] [CrossRef]
- Aldhous, P. China’s burning ambition. Nature 2005, 435, 1152–1154. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ. 2011, 115, 2320–2329. [Google Scholar] [CrossRef]
- Lo, C.P. Modeling the population of China using DMSP operational linescan system nighttime data. Photogramm. Eng. Remote Sens. 2001, 67, 1037–1047. [Google Scholar]
- Townsend, A.; Bruce, D. The Use of Night-time Lights Satellite Imagery as a Measure of Australia’s Regional Electricity Consumption and Population Distribution. Int. J. Remote Sens. 2010, 31, 4459–4480. [Google Scholar] [CrossRef]
- Nordhaus, W.D. Geography and macroeconomics: New data and new findings. Proc. Natl. Acad. Sci. USA 2006, 103, 3510–3517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kummu, M.; Taka, M.; Guillaume, J.H. Gridded global datasets for gross domestic product and Human Development Index over 1990–2015. Sci. Data 2018, 5, 180004. [Google Scholar] [CrossRef] [PubMed]
- Nordhaus, W.; Azam, Q.; Corderi, D.; Hood, K.; Makarova, N.; Mukhtar, A.; Miltner, A.; Weiss, J. The G-Econ Database on Gridded Output: Methods and Data; Yale University, 2006; Available online: http://gecon.yale.edu/ (accessed on 29 August 2018).
- Sutton, P.C.; Elvidge, C.D.; Ghosh, T. Estimation of gross domestic product at sub-national scales using nighttime satellite imagery. Int. J. Ecol. Econ. Stat. 2007, 8, 5–21. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Rafa, M.; Moyer, J.D.; Li, J.; Scheer, J.; Sutton, P. Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sens. 2019, 11, 163. https://doi.org/10.3390/rs11020163
Wang X, Rafa M, Moyer JD, Li J, Scheer J, Sutton P. Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sensing. 2019; 11(2):163. https://doi.org/10.3390/rs11020163
Chicago/Turabian StyleWang, Xuantong, Mickey Rafa, Jonathan D. Moyer, Jing Li, Jennifer Scheer, and Paul Sutton. 2019. "Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery" Remote Sensing 11, no. 2: 163. https://doi.org/10.3390/rs11020163
APA StyleWang, X., Rafa, M., Moyer, J. D., Li, J., Scheer, J., & Sutton, P. (2019). Estimation and Mapping of Sub-National GDP in Uganda Using NPP-VIIRS Imagery. Remote Sensing, 11(2), 163. https://doi.org/10.3390/rs11020163