Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method
Abstract
:1. Introduction
2. Background
3. Data and Methods
3.1. Data
3.2. Flowchart of Landslide Identification and Monitoring
3.2.1. Persistent Scatterer Selection
3.2.2. Landslide Identification
3.3. Landslide Time Series Deformation Monitoring
4. Results and Analysis
4.1. Landslides Identification Results
4.2. Landslide Deformation Monitoring Analysis
4.2.1. Deformation Results
4.2.2. Spatial Deformation Characteristics
4.2.3. Comparison of Interferometric Synthetic Aperture Radar Deformation with Georobot Measurements
5. Discussion
5.1. Landslide Type
5.2. Environmental Factor Analysis
- (i)
- The fluctuation of the water level in the Jinsha River is almost similar in each year during the monitoring period. The water levels of the reservoir area in July and August 2010 are the same as those in July and August 2007, but the landslide deformation in 2007 is much larger than that in 2010, which indicates that the fluctuation of the Jinshajiang river water is not the main influential factor of the landslide movement.
- (ii)
- Qualitatively, the SAR intensity in the rainy season is obviously higher than that in the dry season, which means that the SAR intensity can reflect the surface soil moisture to a certain extent. Accordingly, certain correlation between surface soil moisture and the total precipitation can be found, but there is a weak correlation between surface soil moisture and the landslide deformation.
- (iii)
- During the rainy season, the monitoring result obtained from both georobot and InSAR is more sensitive to heavy precipitation events than to the total precipitation volume. As shown in Figure 14, the groundwater recharge of Section II is mainly from rainfall and the groundwater from Section I [51]. The aquifer of Section II is located at the lower part of the third layer (Qcol) and the upper part of the second layer (Qdel), so the underground water is blocked by slip band soil which is located under the aquifer, and is discharged as a spring at the leading edge of Section II [59]. As measured at the spring, the total discharge of groundwater is about 230 m3/d, and normally, the amount of the supplement and the discharge of the groundwater in this section are in a state of balance [59]. We suggest that when heavy rainfall occurs, the total amount of groundwater recharge is larger than the groundwater discharge, resulting in more water entering the sliding surface, which on the one hand decreases the shear strength of the landslide [65] and on the other hand increases the weight of the landslide. As a consequence, the landslide velocity will increase.
- (iv)
- The maximum deformation of the landslide was highly consistent with the peak precipitation with a time lag of about 1 to 2 months. Quantitatively, the correlations of deformation and precipitation at the two monitoring points are only 0.3 and 0.4, respectively. If a one-month time lag is considered, the correlations increase to 0.56 and 0.55, respectively. However, due to the long ALOS/PALSAR satellite revisit time, it is difficult to identify the fine lag time between heavy precipitation and landslide onset. This finding can be verified with periodic in-situ three dimensional measurements [60].
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, P.; Li, Z.; Hoey, T.; Kincal, C.; Zhang, J.; Zeng, Q.; Muller, J. Using advanced InSAR time series techniques to monitor landslide movements in Badong of the Three Gorges region, China. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 253–264. [Google Scholar] [CrossRef]
- Huang, B.L.; Yin, Y.P.; Liu, G.N.; Wang, S.C.; Chen, X.T.; Huo, Z.T. Analysis of waves generated by Gongjiafang landslide in Wu Gorge, three Gorges reservoir, on November 23, 2008. Landslides 2012, 9, 395–405. [Google Scholar] [CrossRef]
- Michoud, C.; Baumann, V.; Lauknes, T.R.; Penna, I.; Derron, M.H.; Jaboyedoff, M. Large slope deformations detection and monitoring along shores of the potrerillos dam reservoir, Argentina, based on a small-baseline InSAR approach. Landslides 2016, 13, 451–465. [Google Scholar] [CrossRef]
- Fell, R.; Corominas, J.; Bonnard, C.; Cascini, L.; Leroi, E.; Savage, W.Z. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng. Geol. 2008, 102, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Guzzetti, F.; Mondini, A.C.; Cardinali, M.; Fiorucci, F.; Santangelo, M.; Chang, K.T. Landslide inventory maps: New tools for an old problem. Earth-Sci. Rev. 2012, 112, 42–66. [Google Scholar] [CrossRef]
- Crosta, G.B.; Frattini, P.; Agliardi, F. Deep seated gravitational slope deformations in the European Alps. Tectonophysics 2013, 605, 13–33. [Google Scholar] [CrossRef]
- Ding, X.; Montgomery, S.B.; Tsakiri, M.; Swindells, C.F.; Jewell, R.J. Integrated Monitoring Systems for Open Pit Wall Deformation; Meriwa Report No. 186; Australian Centre for Geomechanics: Perth, Australia, 1998. [Google Scholar]
- Thompson, P.W.; Cierlitza, S. Identification of a slope failure over a year before final collapse using multiple monitoring methods. In Geotechnical Instrumentation and Monitoring in Open Pit and Underground Mining; Szwedzicki, T., Ed.; AA Balkema: Rotterdam, The Netherlands, 1993. [Google Scholar]
- Massonnet, D.; Feigl, K.L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 1998, 36, 441–500. [Google Scholar] [CrossRef]
- Bulmer, M.H.; Petley, D.N.; Murphy, W.; Mantovani, F. Detecting slope deformation using two-pass differential interferometry: Implications for landslide studies on Earth and other planetary bodies. J. Geophys. Res. Planets 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Cascini, L.; Fornaro, G.; Peduto, D. Advanced low- and full-resolution DInSAR map generation for slow-moving landslide analysis at different scales. Eng. Geol. 2010, 112, 29–42. [Google Scholar] [CrossRef]
- Farina, P.; Colombo, D.; Fumagalli, A.; Marks, F.; Moretti, S. Permanent scatterers for landslide investigations: Outcomes from the ERS-SLAM project. Eng. Geol. 2006, 88, 200–217. [Google Scholar] [CrossRef]
- Pierson, T.; Lu, Z. InSAR detection of renewed movement of a large ancient landslide in the Columbia River Gorge, Washington. In Proceedings of the Geological Society of America 2009 Annual Meeting, Portland, OR, USA, 18–21 October 2009. [Google Scholar]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting seasonal landslide movement within the cascade landslide complex (Washington) using time-series SAR imagery. Remote Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef]
- Intrieri, E.; Raspini, F.; Fumagalli, A.; Lu, P.; Conte, S.D.; Farina, P. The Maoxian landslide as seen from space: Detecting precursors of failure with sentinel-1 data. Landslides 2017, 15, 123–133. [Google Scholar] [CrossRef]
- Kang, Y.; Zhao, C.Y.; Zhang, Q.; Lu, Z.; Li, B. Application of InSAR techniques to an analysis of the Guanling landslide. Remote Sens. 2017, 9, 1046. [Google Scholar] [CrossRef]
- Calabro, M.D.; Schmidt, D.A.; Roering, J.J. An examination of seasonal deformation at the Portuguese Bend landslide, southern California, using radar interferometry. J. Geophys. Res. Earth Surface 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Catani, F.; Farina, P.; Moretti, S.; Nico, G.; Strozzi, T. On the application of SAR interferometry to geomorphological studies: Estimation of landform attributes and mass movements. Geomorphology 2005, 66, 119–131. [Google Scholar] [CrossRef]
- Strozzi, T.; Farina, P.; Corsini, A.; Ambrosi, C.; Thüring, M.; Zilger, J.; Wiesmann, A.; Wegmüller, U.; Wener, C. Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2005, 2, 193–201. [Google Scholar] [CrossRef]
- Berardino, P.; Costantini, G.; Franceschetti, G.; Iodice, L.; Pietranera, L.; Rizzo, V. Use of differential SAR interferometry in monitoring and modeling large slope instability at Matera (Basilicata, Italy). Eng. Geol. 2003, 68, 31–51. [Google Scholar] [CrossRef]
- Zhu, W.; Zhang, Q.; Ding, X.; Zhao, C.; Yang, C.; Qu, F.; Qu, W. Landslide monitoring by combining of CR-InSAR and GPS techniques. Adv. Space Res. 2014, 53, 430–439. [Google Scholar] [CrossRef]
- Xia, Y.; Kaufmann, H.; Guo, X.F. Landslide monitoring in the Three Gorges area using D-INSAR and corner reflectors. Photogramm. Eng. Remote Sens. 2004, 70, 1167–1172. [Google Scholar]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer InSAR for crustal deformation analysis, with application to Volca’nAlcedo, Gala’pagos. J. Geophys. Solid Earth. 2007, 112, B07407. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferometric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Leva, D.; Nico, G.; Tarchi, D.; Fortuny, G.J.; Sieber, A.J. Temporal analysis of a landslide by means of a ground-based SAR interferometer. IEEE Trans. Geosci. Remote Sens. 2003, 41, 745–752. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Lu, Z.; Zhang, Q.; Fuente, J.D.L. Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over northern California and southern Oregon, USA. Remote Sens. Environ. 2012, 124, 348–359. [Google Scholar] [CrossRef]
- Samsonov, S.; van der Kooij, M.; Tiampo, K. A simultaneous inversion for deformation rates and topographic errors of DInSAR data utilizing linear least square inversion technique. Comput. Geosci. 2011, 37, 1083–1091. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Werner, C.; Wegmuller, U.; Strozzi, T.; Wiesmann, A. Interferometric point target analysis for deformation mapping. In Proceedings of the IGARSS 2003, Toulouse, France, 21–25 July 2003. [Google Scholar]
- Furuya, M.; Mueller, K.; Wahr, J. Active salt tectonics in the Needles District, Canyonlands (Utah) as detected by interferometric synthetic aperture radar and point target analysis: 1992–2002. J. Geophys. Res. Solid Earth 2007. [Google Scholar] [CrossRef]
- Yan, Y.; Doin, M.P.; Lopez-Quiroz, P.; Tupin, F.; Fruneau, B.; Pinel, V.; Trouvé, E. Mexico city subsidence measured by InSAR time series: Joint analysis using PS and SBAS approaches. IEEE. J-STARS 2012, 5, 1312–1326. [Google Scholar] [CrossRef] [Green Version]
- Schlögel, R.; Doubre, C.; Malet, J.P.; Masson, F. Landslide deformation monitoring with ALOS/PALSAR imagery: A D-InSAR geomorphological interpretation method. Geomorphology 2015, 231, 314–330. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, M.S.; Balz, T.; Shi, X.G.; Jiang, Y.N. Monitoring landslide activities in the three gorges area with multi-frequency satellite SAR data sets. In Modern Technologies for Landslide Monitoring and Prediction; Scaioni, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2015; pp. 181–208. [Google Scholar]
- Wang, L.W. Identification of Landslide Displacement in Alpine Valley Region Based on D-InSAR Data Analysis. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 2014. [Google Scholar]
- Wu, J.M. The Disciplinarian on the Development and Distributing of Geo-disaster & Stability Evaluation of the Bank Slope in Wudongde Reservoir Area of the Jinsha River. Master’s Thesis, Chengdu University of Technology, Chengdu, China, 12 July 2009. [Google Scholar]
- Zhang, W. Research of Evaluation Methods for Rock Mass Structures in the Wudongde Hydropower Reservoir Region. Ph.D. Thesis, Jilin University, Changchun, China, 1 June 2013. [Google Scholar]
- Hu, Q.F. Study on Landslide Hazards Risk of Wudongde Bank. Master’s Thesis, Changjiang River Scientific Research Institute, Wuhan, China, 5 May 2014. [Google Scholar]
- Lu, Z.; Dzurisin, D.; Jung, H.S.; Zhang, J.; Zhang, Y. Radar image and data fusion for natural hazards characterization. Int. J. Image Data Fusion. 2010, 1, 217–242. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Zhang, Q.; Yin, Y.; Lu, Z.; Yang, C.; Zhu, W.; Li, B. Pre-, co-, and post-rockslide analysis with ALOS/PALSAR imagery: A case study of the Jiweishan rockslide, China. Nat. Hazard. Earth Syst. Sci. 2013, 13, 2851–2861. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Zhang, Q.; He, Y.; Peng, J.B.; Yang, C.S.; Kang, Y. Small-scale loess landslide monitoring with small baseline subsets interferometric synthetic aperture radar technique—Case study of Xingyuan landslide, Shaanxi, China. J. Appl. Remote Sens. 2016, 10. [Google Scholar] [CrossRef]
- Motagh, M.; Wetzel, H.U.; Roessner, S.; Kaufmann, H. A TerraSAR-X InSAR study of landslides in southern Kyrgyzstan, central Asia. Remote Sens. Lett. 2013, 4, 657–666. [Google Scholar] [CrossRef]
- Hooper, A. A multi-temporal InSAR method incorporating both persistent scatterer and small baseline approaches. Geophys. Res. Lett. 2008, 35, 1–5. [Google Scholar] [CrossRef]
- Wang, Z.H.; Guo, D.H.; Zheng, X.W.; Wang, J.C.; Guo, Z.C.; Dong, L.N. Remote sensing interpretation on June 28, 2010 Guanling landslide, Guizhou Province, China. Geosci. Front. 2011, 18, 310–316. (In Chinese) [Google Scholar]
- Wang, Z.H. Remote sensing for landslide survey, monitoring and evaluation. Remote Sens. Land Resour. 2007, 1, 10–15. (In Chinese) [Google Scholar]
- Pepe, A.; Lanari, R. On the extension of the minimum cost flow algorithm for phase unwrapping of multitemporal differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2374–2383. [Google Scholar] [CrossRef]
- Kimura, H.; Todo, M. Baseline estimation using ground points for interferometric SAR. In Proceedings of the Geoscience and Remote Sensing, 1997. IGARSS ’97. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997. [Google Scholar]
- Fan, X.; van Westen, C.J.; Xu, Q.; Gorum, T.; Dai, F. Analysis of landslide dams induced by the 2008 Wenchuan earthquake. J. Asian Earth Sci. 2012, 57, 25–37. [Google Scholar] [CrossRef]
- Tang, P.P.; Chen, F.L.; Guo, H.D.; Tian, B.S.; Wang, X.Y.; Ishwaran, N. Large-area landslides monitoring using advanced multi-temporal InSAR technique over the giant panda habitat, Sichuan, China. Remote Sens. 2015, 7, 8925–8949. [Google Scholar] [CrossRef]
- Cheng, X.F.; Zhu, C.B.; Qi, W.F.; Xu, J.; Yuaqn, J. Formation conditions, development tendency and preventive measures of Pufu landslide in Luquan of Yunnan. Min. Res. Geo. 2015, 29, 395–401. (In Chinese) [Google Scholar]
- Wang, T.L.; Liu, C.P.; Hao, W.Z. Geological research on Jinpingzi giant landslide of Wudongde Hydropower Station. Yangt. Riv. 2014, 45, 54–58. (In Chinese) [Google Scholar]
- Wang, X.M. Study on Rock Fractures and Rock Blocks in Wudongde Dam Area. Ph.D. Thesis, China University of Geosciences, Beijing, China, 12 July 2013. [Google Scholar]
- Lyons, S.; Sandwell, D. Fault creep along the southern san Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. J. Geophys. Res. Solid Earth 2003, 108, 233–236. [Google Scholar] [CrossRef]
- Gomberg, J.; Bodin, P.; Savage, W.; Jackson, M.E. Landslide faults and tectonic faults, analogs? The slumgullion earthflow, Colorado. Geology 1995, 23, 41–44. [Google Scholar] [CrossRef]
- Parise, M. Observation of surface features on an active landslide, and implications for understanding its history of movement. Nat. Hazards Earth Syst. Sci. 2003, 3, 569–580. [Google Scholar] [CrossRef] [Green Version]
- Guerriero, L.; Coe, J.A.; Revellino, P.; Grelle, G.; Pinto, F.; Guadagno, F.M. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy. Geomorphology 2014, 219, 285–305. [Google Scholar] [CrossRef]
- Gomberg, J.S.; Schulz, W.H.; Bodin, P.; Kean, J.W. Seismic and geodetic signatures of fault slip at the Slumgullion landslide natural laboratory. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Walter, M.; Gomberg, J.; Schulz, W.; Bodin, P.; Joswig, M. Slidequake generation versus viscous creep at soft rock-landslides: Synopsis of three different scenarios at Slumgullion landslide, Heumoes slope, and Super-Sauze mudslide. J. Environ. Eng. Geophys. 2013, 18, 269–280. [Google Scholar] [CrossRef]
- Xu, B. Study on Deformation Characteristics of Instability and Sliding Model of Creep Landslide. Ph.D. Thesis, University of Science and Technology Beijing, Beijing, China, 12 July 2016. [Google Scholar]
- Changjiang Institute of Survey, Planning, Design and Research. Comprehensive Analysis Report of Safety Monitoring Data of Jinpingzi Landslide; Changjiang Institute of Survey, Planning, Design and Research: Wuhan, China, 2014. [Google Scholar]
- McConchie, J.A. The influence of earthflow morphology on moisture conditions and slope instability. J. Hydrol. 2004, 43, 3–17. [Google Scholar]
- Ray, R.L.; Jacobs, J.M.; Cosh, M.H. Landslide susceptibility mapping using downscaled AMSR-E soil moisture: A case study from Cleveland Corral, California, US. Remote. Sens. Environ. 2010, 114, 2624–2636. [Google Scholar] [CrossRef]
- Hawke, R.; Mcconchie, J. In situ measurement of soil moisture and pore-water pressures in an ‘incipient’ landslide: Lake tutira, New Zealand. J. Environ. Manag. 2011, 92, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Bogaard, T.A.; Van Asch, T.W. The role of the soil moisture balance in the unsaturated zone on movement and stability of the Beline landslide, France. Earth Surf. Process. Landf. 2002, 27, 1177–1188. [Google Scholar] [CrossRef]
- Iverson, R. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef] [Green Version]
- Iverson, R.; Major, J. Rainfall, ground-water flow, and seasonal movement at Minor Creek landslide, Northwestern California: Physical interpretation of empirical relations. Geol. Soc. Am. Bull. 1987, 99, 579–594. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave Remote Sensing: Active and Passive; Volume III, Artech House: Norwood, MA, USA, 1986. [Google Scholar]
- Lu, Z.; Meyer, D.J. Study of high SAR backscattering caused by an increase of soil moisture over a sparsely vegetated area: Implications for characteristics of backscattering. Int. J. Remote Sens. 2002, 23, 1063–1074. [Google Scholar] [CrossRef]
- Stamatopoulos, C.A.; Di, B. Analytical and approximate expressions predicting post-failure landslide displacement using the multi-block model and energy methods. Landslides 2015, 12, 1207–1213. [Google Scholar] [CrossRef]
- Di, B.; Stamatopoulos, C.A.; Dandoulaki, M.; Stavrogiannopoulou, E.; Zhang, M.; Bampina, P. A method predicting the earthquake-induced landslide risk by back analyses of past landslides and its application in the region of the Wenchuan 12/5/2008 earthquake. Nat. Hazards 2017, 85, 903–927. [Google Scholar] [CrossRef]
No. | Master | Slave | Perpendicular Baseline (m) | Interval | Subset |
---|---|---|---|---|---|
1 | 20080112 | 20080227 | 404 | 46 | 1 |
2 | 20080112 | 20080413 | 706 | 92 | 1 |
3 | 20080227 | 20080413 | 302 | 46 | 1 |
4 | 20080829 | 20081014 | 925 | 46 | 2 |
5 | 20081014 | 20081129 | 186 | 46 | 2 |
6 | 20081129 | 20090301 | 392 | 92 | 2 |
7 | 20090901 | 20091017 | 245 | 46 | 3 |
8 | 20091017 | 20100117 | 198 | 92 | 3 |
9 | 20100117 | 20100720 | 697 | 184 | 3 |
10 | 20100720 | 20100904 | 251 | 46 | 3 |
11 | 20100904 | 20101205 | 54 | 92 | 3 |
12 | 20100904 | 20110120 | 442 | 138 | 3 |
13 | 20101205 | 20110120 | 351 | 46 | 3 |
14 | 20101205 | 20110307 | 804 | 92 | 3 |
15 | 20110120 | 20110307 | 453 | 46 | 3 |
Method | Drill Hole | InSAR | |||
---|---|---|---|---|---|
No. | Depth (m) | Monitoring Period | Velocity (mm/d) | Monitoring Period | Velocity (mm/d) |
IN04 | 54 | 2005.7.18–2005.9.06 | 0.81 | - | - |
IN05 | 55 | 2009.8.20–2009.9.18 | 1.54 | 2009.9.1–2009.10.17 | 1.1 ± 0.1 |
IN06 | 61 | 2009.10.10–2009.11.7 | 1.58 | 2009.10.17–2010.1.17 | 0.8 ± 0.06 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, C.; Kang, Y.; Zhang, Q.; Lu, Z.; Li, B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sens. 2018, 10, 993. https://doi.org/10.3390/rs10070993
Zhao C, Kang Y, Zhang Q, Lu Z, Li B. Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sensing. 2018; 10(7):993. https://doi.org/10.3390/rs10070993
Chicago/Turabian StyleZhao, Chaoying, Ya Kang, Qin Zhang, Zhong Lu, and Bin Li. 2018. "Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method" Remote Sensing 10, no. 7: 993. https://doi.org/10.3390/rs10070993
APA StyleZhao, C., Kang, Y., Zhang, Q., Lu, Z., & Li, B. (2018). Landslide Identification and Monitoring along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method. Remote Sensing, 10(7), 993. https://doi.org/10.3390/rs10070993