A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements
Abstract
:1. Introduction
2. Background
2.1. TIRS Collection-1 Product
2.2. Stray Light Correction with External Sensors
3. Methodology
3.1. Conversion of GOES-N Data to TIRS Sensor-Reaching Radiance
3.1.1. Simulation Setup
3.1.2. Relative Spectral Response (RSR) Adjustment
3.2. Quick-GOES to TIRS Conversion (Q-GTTC) Algorithm
3.3. Estimation of Stray Light Bias
3.4. Build the Regression to Remove the Stray Light
4. Results and Discussion
4.1. The Uncertainties from Q-GTTC Algorithm
4.2. Validate the Q-GTTC-Based GOES-on-TIRS Correction with Collection-1 Data
4.3. Extreme Landscape and Cloud Case Studies
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- NASA. Landsat Data Continuity Mission Thermal Infrared Sensor Requirements Document-Revision F2; GSFC 427-15-02; NASA Goddard Space Flight Center: Greenbelt, MD, USA, 2013.
- Montanaro, M.; Lunsford, A.; Tesfaye, Z.; Wenny, B.; Reuter, D. Radiometric Calibration Methodology of the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 8803–8821. [Google Scholar] [CrossRef]
- Montanaro, M.; Julia, B.; Lunsford, A.; Rohrbach, S.; Markham, B. Performance of the Thermal Infrared Sensor on-board Landsat 8 over the first year on-orbit. In Proceedings of the SPIE Earth Observing Systems XIX, San Diego, CA, USA, 2 October 2014; Volume 10402. [Google Scholar]
- Montanaro, M.; Gerace, A.; Lunsford, A.; Reuter, D. Stray Light Artifacts in Imagery from the Landsat 8 Thermal Infrared Sensor. Remote Sens. 2014, 6, 10435–10456. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A.; Rohrbach, S. Toward an operational stray light correction for the Landsat 8 thermal infrared sensor. Appl. Opt. 2015, 54, 3963–3978. [Google Scholar] [CrossRef]
- Montanaro, M.; Gerace, A. Derivation and validation of the stray light correction algorithm for thethermal infrared sensor onboard landsat 8. Remote Sens. Environ. 2017, 191, 246–257. [Google Scholar]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 thermal infrared sensor TIRS vicarious radiometric calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Wang, Y.; Ientilucci, E.; Raqueno, N.; Schott, J. Landsat 8 TIRS calibration with external sensors. Proc. SPIE 2017, 9218. [Google Scholar] [CrossRef]
- Gerace, A.; Montanaro, M.; Connal, R. Leveraging intercalibration techniques to support stray-light removal from Landsat 8 Thermal Infrared Sensor data. J. Appl. Remote Sens. 2017, 12, 1–13. [Google Scholar] [CrossRef]
- NOAA Office of Satellite, and Product Operations, Geostationary Operational Environmental Satellites (GOES). 2017. Available online: https://www.class.ncdc.noaa.gov/saa/products/welcome (accessed on 21 March 2017).
- Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, National Centers for Environmental Prediction/National Weather Service/NOAA/U.S. Department of Commerce (2005): NCEP North American Regional Reanalysis (NARR). 2017. Available online: http://rda.ucar.edu/datasets/ds608.0/ (accessed on 21 March 2017).
- Soler, T.; Eisemann, D.W. Determination of Look Angles to Geostationary Communication Satellites. J. Surv. Eng. 1994, 120, 115–127. [Google Scholar] [CrossRef]
- Kilpatrick, K.A.; Podesta, G.; Walsh, S.; Williams, E.; Halliwell, V.; Szczodrak, M.; Brown, O.B.; Minnett, P.J.; Evans, R. A decade of sea surface temperature from MODIS. Remote Sens. Environ. 2015, 165, 27–41. [Google Scholar] [CrossRef]
- Cook, M.J.; Schott, J.R. Initial validation of atmospheric compensation for a Landsat land surface temperature product. Proc. SPIE 2013, 8743. [Google Scholar] [CrossRef]
- Cook, M.; Schott, J.; Mandel, J.; Raqueno, N. Development of an operational calibration methodology for the Landsat thermal data archive and initial testing of the atmospheric compensation component of a Land Surface Temperature (LST) product from the archive. Remote Sens. 2014, 6, 11244–11266. [Google Scholar] [CrossRef]
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ientilucci, E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sens. 2018, 10, 589. https://doi.org/10.3390/rs10040589
Wang Y, Ientilucci E. A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sensing. 2018; 10(4):589. https://doi.org/10.3390/rs10040589
Chicago/Turabian StyleWang, Yue, and Emmett Ientilucci. 2018. "A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements" Remote Sensing 10, no. 4: 589. https://doi.org/10.3390/rs10040589
APA StyleWang, Y., & Ientilucci, E. (2018). A Practical Approach to Landsat 8 TIRS Stray Light Correction Using Multi-Sensor Measurements. Remote Sensing, 10(4), 589. https://doi.org/10.3390/rs10040589