Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information
Abstract
:1. Introduction
2. Related Techniques
2.1. Spatial Information with EMPs
2.2. Band Selection with FMS
2.3. Hierarchical Representation of HSIs
2.4. AMG-MHSEG Algorithm
Algorithm 1: AMG-MHSEG |
Input: An original hyperspectral image u and the coarsest grid level S. Output: Segmentation maps |
|
3. The Proposed Classification Framework
3.1. Spectral-Spatial Kernel
3.2. The SVM-SSHK Method
Algorithm 2: SVM-SSHK |
Input: An original hyperspectral image u, the available training samples, required number of segmentation maps S, the time step size τ, Gaussian scale σ, the gradient threshold β, the critical threshold υ and the number of morphological operators n. |
Step 1: Initialize S, τ, σ, υ and n. Step 2: Obtain the first three PCs of u; Step 3: Construct the EMP by computing the MPs for all the PCs in Step 2 as described in Section 2.1. Step 4: Perform the FMS algorithm on u for feature selection to produce its spectral subset u1 with the most relevant spectral bands as described in Section 2.2. Step 5: For i = 1, 2, . . . , S (a) Construct the ith grid of u1 using the procedures described in Section 2.3. (b) Select all the vertices in the ith grid as makers for the HSEG algorithm and initialize each vertex with a non-zero marker label. (c) Obtain the ith segmentation map by using the MHSEG algorithm described in Algorithm 1. End Step 6: Normalize u, the EMP and the S-scale HSEG maps to [0,1]. Step 7: Construct the spectral, spatial and hierarchical kernels as described in Section 3.2. Step 8: Apply the SVM classifier with the proposed SSHK kernel in (29) to classify u using the training samples by choosing the optimal C and . Step 9: Obtain the final classification map. |
4. Experiments
4.1. Image Description
4.2. Experimental Settings
- (1)
- The SVM algorithm with the RBF kernel was exploited by all of the methods, except for MLR-GCK, and the optimal C and for each method were obtained by five-fold cross validation ranging from 2−5 to 215 and 2−15 to 25, respectively.
- (2)
- For EMP, the first three PCs were used for building the MPs, which were computed using a flat disk-shaped SE with radius from 1 to 15 with the step size of 2.
- (3)
- For EPF, the first PC was used as a guidance image, a local window was used for the joint bilateral filter, two Gaussian scales were fixed as and .
- (4)
- For SVM-CK, the weight was fixed as , and a local window was used for each pixel to compute the mean and variance.
- (5)
- For MLR-GCK, the spectral and spatial variances were fixed as and , respectively, and .
- (6)
- For SC-SSK, the two parameters were fixed as and . The number of superpixels was fixed as 200 and 3500 for the IP and UP images, respectively.
- (7)
- For SC-MK, the three weights were fixed as , and , respectively, and the number of superpixels was fixed as 200.
4.3. Experimental results
4.3.1. The IP Image
4.3.2. The UP Image
5. Discussion
5.1. Impact of n
5.2. Impact of Different Number of PCs
5.3. Impact of υ
5.4. Impact of Weights
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Cloutis, E.A. Review article hyperspectral geological remote sensing: Evaluation of analytical techniques. Int. J. Remote Sens. 1996, 17, 2215–2242. [Google Scholar] [CrossRef]
- Kruse, F.A.; Boardman, J.W.; Huntington, J.F. Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1388–1400. [Google Scholar] [CrossRef]
- Cochrane, M.A. Using vegetation reflectance variability for species level classification of hyperspectral data. Int. J. Remote Sens. 2000, 21, 2075–2087. [Google Scholar] [CrossRef]
- Strachan, I.B.; Pattey, E.; Boisvert, J.B. Impact of nitrogen and environmental conditions on corn as detected by hyperspectral reflectance. Remote Sens. Environ. 2002, 80, 213–224. [Google Scholar] [CrossRef]
- Dahan, M. Compressive fluorescence microscopy for biological and hyperspectral imaging. Proceed. Natl. Acad. Sci. USA 2012, 109, 1679–1687. [Google Scholar]
- Hughes, G. On the mean accuracy of statistical pattern recognizers. Inf. Theory IEEE Trans. 1968, 14, 55–63. [Google Scholar] [CrossRef]
- Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in spectral-spatial classification of hyperspectral images. Proc. IEEE 2013, 101, 652–675. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Tuia, D.; Bruzzone, L.; Benediktsson, J.A. Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 2014, 31, 45–54. [Google Scholar] [CrossRef]
- Yang, H. A back-propagation neural network for mineralogical mapping from aviris data. Int. J. Remote Sens. 1999, 20, 97–110. [Google Scholar] [CrossRef]
- Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790. [Google Scholar] [CrossRef]
- Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501. [Google Scholar] [CrossRef]
- Chen, C.H.; Peter Ho, P.-G. Statistical pattern recognition in remote sensing. Pattern Recognit. 2008, 41, 2731–2741. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Bruzzone, L. Kernel Methods for Remote Sensing Data Analysis; Wiley: New York, NY, USA, 2009. [Google Scholar]
- Ratle, F.; Camps-Valls, G.; Weston, J. Semisupervised neural networks for efficient hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2271–2282. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support vector machine. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Böhning, D. Multinomial logistic regression algorithm. Ann. Inst. Stat. Math. 1992, 44, 197–200. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Semisupervised hyperspectral image segmentation using multinomial logistic regression with active learning. IEEE Trans. Geosci. Remote Sens. 2010, 48, 4085–4098. [Google Scholar] [CrossRef]
- Li, J.; Bioucas-Dias, J.M.; Plaza, A. Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields. IEEE Trans. Geosci. Remote Sens. 2012, 50, 809–823. [Google Scholar] [CrossRef]
- Plaza, A.; Benediktsson, J.A.; Boardman, J.W.; Brazile, J.; Bruzzone, L.; Camps-Valls, G.; Chanussot, J.; Fauvel, M.; Gamba, P.; Gualtieri, A. Recent advances in techniques for hyperspectral image processing. Remote Sens. Environ. 2009, 113, S110–S122. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Gomez-Chova, L.; Munoz-Mari, J.; Vila-Frances, J.; Calpe-Maravilla, J. Composite kernels for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2006, 3, 93–97. [Google Scholar] [CrossRef]
- Camps-Valls, G.; Shervashidze, N.; Borgwardt, K.M. Spatio-spectral remote sensing image classification with graph kernels. IEEE Geosci. Remote Sens. Lett. 2010, 7, 741–745. [Google Scholar] [CrossRef]
- Mathieu, F.; Jocelyn, C.; Atli, B.J. A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar]
- Wang, Y.; Zhang, Y.; Song, H. A spectral-texture kernel-based classification method for hyperspectral images. Remote Sens. 2016, 8, 919. [Google Scholar] [CrossRef]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. A spatial-spectral kernel-based approach for the classification of remote-sensing images. Pattern Recognit. 2012, 45, 381–392. [Google Scholar] [CrossRef]
- Shen, L.; Zhu, Z.; Jia, S.; Zhu, J.; Sun, Y. Discriminative gabor feature selection for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2013, 10, 29–33. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. A comparative study of spatial approaches for urban mapping using hyperspectral rosis images over pavia city, northern italy. Int. J. Remote Sens. 2009, 30, 3205–3221. [Google Scholar] [CrossRef]
- Kang, X.; Li, S.; Benediktsson, J.A. Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2666–2677. [Google Scholar] [CrossRef]
- Benediktsson, J.A.; Palmason, J.A.; Sveinsson, J.R. Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans. Geosci. Remote Sens. 2005, 43, 480–491. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L. An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery. IEEE Trans. Geosci. Remote Sens. 2008, 46, 4173–4185. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images using watershed transformation. Pattern Recognit. 2010, 43, 2367–2379. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Tilton, J.C.; Benediktsson, J.A.; Chanussot, J. A marker-based approach for the automated selection of a single segmentation from a hierarchical set of image segmentations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 262–272. [Google Scholar] [CrossRef]
- Song, H.; Wang, Y. A spectral-spatial classification of hyperspectral images based on the algebraic multigrid method and hierarchical segmentation algorithm. Remote Sens. 2016, 8, 296. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Chanussot, J.; Benediktsson, J.A. Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers. IEEE Trans. Syst. Man Cybern. 2010, 40, 1267–1279. [Google Scholar] [CrossRef] [PubMed]
- Tarabalka, Y.; Rana, A. Graph-Cut-Based Model for Spectral-Spatial Classification of Hyperspectral Images. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 3418–3421. [Google Scholar]
- Wang, Y.; Song, H.; Zhang, Y. Spectral-spatial classification of hyperspectral images using joint bilateral filter and graph cut based model. Remote Sens. 2016, 8, 748. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Kang, X.; Benediktsson, J.A. Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model. IEEE Trans. Geosci. Remote Sens. 2015, 53, 4186–4201. [Google Scholar] [CrossRef]
- Farag, A.A.; Mohamed, R.M.; El-Baz, A. A unified framework for map estimation in remote sensing image segmentation. IEEE Trans. Geosci. Remote Sens. 2005, 43, 1617–1634. [Google Scholar] [CrossRef]
- Tarabalka, Y.; Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Svm-and mrf-based method for accurate classification of hyperspectral images. IEEE Geosci. Remote Sens. Lett. 2010, 7, 736–740. [Google Scholar] [CrossRef]
- Zhang, B.; Li, S.; Jia, X.; Gao, L.; Peng, M. Adaptive markov random field approach for classification of hyperspectral imagery. IEEE Geosci. Remote Sens. Lett. 2011, 8, 973–977. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B. Combining support vector machines and markov random fields in an integrated framework for contextual image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2734–2752. [Google Scholar] [CrossRef]
- Bai, J.; Xiang, S.; Pan, C. A graph-based classification method for hyperspectral images. IEEE Trans. Geosci. Remote Sens. 2013, 51, 803–817. [Google Scholar] [CrossRef]
- Ghamisi, P.; Benediktsson, J.A.; Ulfarsson, M.O. Spectral-spatial classification of hyperspectral images based on hidden markov random fields. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2565–2574. [Google Scholar] [CrossRef]
- Golipour, M.; Ghassemian, H.; Mirzapour, F. Integrating hierarchical segmentation maps with mrf prior for classification of hyperspectral images in a bayesian framework. IEEE Trans. Geosci. Remote Sens. 2016, 54, 805–816. [Google Scholar] [CrossRef]
- Fauvel, M.; Benediktsson, J.A.; Chanussot, J.; Sveinsson, J.R. Spectral and spatial classification of hyperspectral data using svms and morphological profiles. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3804–3814. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Fang, L.; Li, S.; Duan, W.; Ren, J.; Benediktsson, J.A. Classification of hyperspectral images by exploiting spectral-spatial information of superpixel via multiple kernels. IEEE Trans. Geosci. Remote Sens. 2015, 53, 6663–6674. [Google Scholar] [CrossRef]
- Lu, T.; Li, S.; Fang, L.; Jia, X.; Benediktsson, J.A. From subpixel to superpixel: A novel fusion framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4398–4411. [Google Scholar] [CrossRef]
- Peng, J.; Chen, H.; Zhou, Y.; Li, L. Ideal regularized composite kernel for hyperspectral image classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 1563–1574. [Google Scholar] [CrossRef]
- Palmason, J.A.; Benediktsson, J.A.; Sveinsson, J.R.; Chanussot, J. Classification of Hyperspectral Data from Urban Areas Using Morphological Preprocessing and Independent Component Analysis. In Proceedings of the 2005 IEEE International Geoscience and Remote Sensing Symposium, Seoul, Korea, 25–29 July 2005; p. 4. [Google Scholar]
- Fauvel, M.; Chanussot, J.; Benediktsson, J.A. Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J. Adv. Signal Process. 2009, 2009, 783194. [Google Scholar] [CrossRef]
- Castaings, T.; Waske, B.; Atli Benediktsson, J.; Chanussot, J. On the influence of feature reduction for the classification of hyperspectral images based on the extended morphological profile. Int. J. Remote Sens. 2010, 31, 5921–5939. [Google Scholar] [CrossRef]
- Pal, M.; Foody, G.M. Feature selection for classification of hyperspectral data by svm. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2297–2307. [Google Scholar] [CrossRef]
- Tuia, D.; Camps-Valls, G.; Matasci, G.; Kanevski, M. Learning relevant image features with multiple-kernel classification. IEEE Trans. Geosci. Remote Sens. 2010, 48, 3780–3791. [Google Scholar] [CrossRef]
- Jia, X.; Kuo, B.C.; Crawford, M.M. Feature mining for hyperspectral image classification. Proc. IEEE 2013, 101, 676–697. [Google Scholar] [CrossRef]
- Taşkın, G.; Kaya, H.; Bruzzone, L. Feature selection based on high dimensional model representation for hyperspectral images. IEEE Trans. Image Process. 2017, 26, 2918–2928. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Zhou, H.; Cheng, J. The fisher-markov selector: Fast selecting maximally separable feature subset for multiclass classification with applications to high-dimensional data. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1217–1233. [Google Scholar] [CrossRef] [PubMed]
- Perona, P.; Malik, J. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12, 629–639. [Google Scholar] [CrossRef]
- Weickert, J.; Romeny, B.M.T.H.; Viergever, M.A. Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Geosci. Remote Sens. 1998, 7, 398–410. [Google Scholar] [CrossRef] [PubMed]
- Falgout, R.D. An introduction to algebraic multigrid. Comput. Sci. Eng. 2006, 8, 24–33. [Google Scholar] [CrossRef]
- Duarte-Carvajalino, J.M.; Sapiro, G.; Vélez-Reyes, M.; Castillo, P.E. Multiscale representation and segmentation of hyperspectral imagery using geometric partial differential equations and algebraic multigrid methods. IEEE Trans. Geosci. Remote Sens. 2008, 46, 2418–2434. [Google Scholar] [CrossRef]
- Briggs, W.L.; Henson, V.E.; McCormick, S.F. A Multigrid Tutorial, 2nd ed.; SIAM: Philadelphia, PA, USA, 2000; pp. 7–48. [Google Scholar]
- Cristianini, N.; Scholkopf, B. Support vector machines and kernel methods: The new generation of learning machines. Ai Mag. 2002, 23, 31. [Google Scholar]
- Schölkopf, B.; Smola, A.J. Learning with Kernels. Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
Class | M | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
15 | 20 | 25 | 30 | 35 | 40 | |||||||
Training | Test | Training | Test | Training | Test | Training | Test | Training | Test | Training | Test | |
The IP image | ||||||||||||
Alfalfa | 32.61% | 67.39% | 43.48% | 56.52% | 54.35% | 45.65% | 65.22% | 34.78% | 76.09% | 23.91% | 86.96% | 13.04% |
Corn-no till | 1.05% | 98.95% | 1.40% | 98.60% | 1.75% | 98.25% | 2.10% | 97.90% | 2.45% | 97.55% | 2.80% | 97.20% |
Corn-min till | 1.81% | 98.19% | 2.41% | 97.59% | 3.01% | 96.99 | 3.62% | 96.38% | 4.22% | 95.78% | 4.82% | 95.18% |
Corn | 6.33% | 93.67% | 8.44% | 91.56% | 10.55% | 89.45% | 12.66% | 87.34% | 14.77% | 85.23% | 16.88% | 83.12% |
Grass-pasture | 3.11% | 96.89% | 4.14% | 95.86% | 5.18% | 94.82% | 6.21% | 93.79% | 7.25% | 92.75% | 8.28% | 91.72% |
Grass-trees | 2.05% | 97.95% | 2.74% | 97.26% | 3.42% | 96.58% | 4.11% | 95.89% | 4.79% | 95.21% | 5.48% | 94.52% |
Grass-pasture-mowed | 53.57% | 46.43% | 71.43% | 28.57% | 89.29% | 10.71% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% |
Hay-windrowed | 3.14% | 96.86% | 4.18% | 95.82% | 5.23% | 94.77% | 6.28% | 93.72% | 7.32% | 92.68% | 8.37% | 91.63% |
Oats | 75% | 25% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% | 50.00% |
Soybean-no till | 1.54% | 98.46% | 2.06% | 97.94% | 2.57% | 97.43% | 3.09% | 96.91% | 3.60% | 96.4% | 4.12% | 95.88% |
Soybean-min till | 0.61% | 99.39% | 0.81% | 99.19% | 1.02% | 98.98% | 1.22% | 98.78% | 1.43% | 98.57% | 1.63% | 98.37% |
Soybean-clean | 2.53% | 97.47% | 3.37% | 96.63% | 4.22% | 95.78% | 5.06% | 94.94% | 5.90% | 94.1% | 6.75% | 93.25% |
Wheat | 7.32% | 92.68% | 9.76% | 90.24% | 12.20% | 87.80% | 14.63% | 85.37% | 17.07% | 82.93% | 19.51% | 80.49% |
Woods | 1.19% | 98.81% | 1.58% | 98.42% | 1.98% | 98.02% | 2.37% | 97.63% | 2.77% | 97.23% | 3.16% | 96.84% |
Buildings-Grass-Trees-Drives | 3.89% | 96.11% | 5.18% | 94.82% | 6.48% | 93.52% | 7.77% | 92.23% | 9.07% | 90.93% | 10.36% | 89.64% |
Stone-Steel-Towers | 16.13% | 83.87% | 21.51% | 78.49% | 26.88% | 73.12% | 3.23% | 96.77% | 37.63% | 62.37% | 43.01% | 56.99% |
The UP Image | ||||||||||||
Asphalt | 0.23% | 99.77% | 0.30% | 99.7% | 0.38% | 99.62% | 0.45% | 99.55% | 0.53% | 99.47% | 0.60% | 99.4% |
Meadows | 0.08% | 99.92% | 0.11% | 99.89% | 0.13% | 99.87% | 0.16% | 99.84% | 0.19% | 99.81% | 0.21% | 99.79% |
Gravel | 0.71% | 99.29% | 0.95% | 99.05% | 0.12% | 99.88% | 1.43% | 98.57% | 1.67% | 98.33% | 1.91% | 98.09% |
Trees | 0.49% | 99.51% | 0.65% | 99.35% | 0.82% | 99.18% | 0.98% | 99.02% | 1.14% | 98.86% | 1.31% | 98.69% |
Metal Sheets | 1.12% | 98.88% | 1.49% | 98.51% | 1.86% | 98.14% | 2.23% | 97.77% | 2.60% | 97.4% | 2.97% | 97.03% |
Bare Soil | 0.30% | 99.7% | 0.40% | 99.6% | 0.50% | 99.5% | 0.60% | 99.4% | 0.70% | 99.3% | 0.80% | 99.2% |
Bitumen | 1.13% | 98.87% | 1.50% | 98.5% | 1.88% | 98.12% | 2.26% | 97.74% | 2.63% | 97.37% | 3.01% | 96.99% |
Self-Blocking Bricks | 0.41% | 99.59% | 0.54% | 99.46% | 0.68% | 99.32% | 0.81% | 99.19% | 0.95% | 99.05% | 1.09% | 98.91% |
Shadow | 1.58% | 98.42% | 2.11% | 97.89% | 2.64% | 97.36% | 3.17% | 96.83% | 3.70% | 96.3% | 4.22% | 95.78% |
Class | Kernels Used in the SVM Classifier | |||||
---|---|---|---|---|---|---|
Alfalfa | 98.33 ± 5.00 | 98.33 ± 5.00 | 98.33 ± 5.00 | 98.33 ± 5.00 | 98.33 ± 5.00 | 98.33 ± 5.00 |
Corn-no till | 76.40 ± 3.96 | 82.50 ± 3.26 | 85.44 ± 5.02 | 87.07 ± 1.84 | 88.90 ± 4.59 | 87.37 ± 5.48 |
Corn-min till | 76.01 ± 3.37 | 90.82 ± 3.01 | 94.07 ± 1.27 | 91.56 ± 2.14 | 94.89 ± 1.43 | 94.02 ± 1.86 |
Corn | 89.55 ± 3.98 | 92.60 ± 3.74 | 93.06 ± 4.68 | 93.06 ± 3.63 | 95.00 ± 3.29 | 95.25 ± 3.23 |
Grass-pasture | 92.32 ± 2.85 | 91.98 ± 2.49 | 90.65 ± 2.85 | 93.07 ± 2.62 | 93.79 ± 3.04 | 94.02 ± 2.70 |
Grass-trees | 94.42 ± 1.28 | 97.50 ± 1.84 | 91.69 ± 3.91 | 97.84 ± 1.46 | 96.31 ± 2.19 | 98.04 ± 1.48 |
Grass-pasture-mowed | 95.71 ± 4.74 | 95.00 ± 4.57 | 95.00 ± 3.27 | 98.57 ± 2.86 | 99.29 ± 2.14 | 99.29 ± 2.14 |
Hay-windrowed | 97.66 ± 0.67 | 99.63 ± 0.15 | 98.30 ± 2.08 | 99.66 ± 0.15 | 99.52 ± 0.86 | 99.79 ± 0.22 |
Oats | 99.00 ± 3.00 | 97.89 ± 4.23 | 97.78 ± 6.67 | 99.00 ± 3.00 | 100 ± 0 | 100 ± 0 |
Soybean-no till | 79.00 ± 7.18 | 83.89 ± 3.82 | 92.53 ± 4.57 | 86.39 ± 4.58 | 93.62 ± 3.66 | 93.91 ± 3.87 |
Soybean-min till | 66.59 ± 5.06 | 85.34 ± 5.54 | 88.01 ± 4.73 | 84.30 ± 4.82 | 88.16 ± 3.14 | 90.55 ± 3.84 |
Soybean-clean | 85.04 ± 5.23 | 85.23 ± 4.82 | 95.43 ± 2.43 | 90.91 ± 4.07 | 95.54 ± 1.80 | 95.57 ± 1.80 |
Wheat | 99.15 ± 0.49 | 98.78 ± 0.72 | 95.12 ± 3.01 | 98.90 ± 0.65 | 99.09 ± 0.49 | 98.96 ± 0.55 |
Woods | 90.38 ± 2.90 | 98.42 ± 2.27 | 92.41 ± 3.68 | 98.11 ± 2.00 | 98.03 ± 2.05 | 98.89 ± 0.76 |
Buildings-Grass-Trees-Drives | 71.73 ± 4.09 | 97.80 ± 1.76 | 94.35 ± 2.78 | 97.71 ± 1.40 | 97.39 ± 1.43 | 97.94 ± 1.67 |
Stone-Steel-Towers | 96.77 ± 1.48 | 98.48 ± 0.76 | 97.34 ± 1.75 | 98.67 ± 0.87 | 98.48 ± 0.76 | 98.29 ± 1.02 |
OA | 80.08 ± 1.41 | 89.64 ± 1.60 | 90.93 ± 1.86 | 90.72 ± 1.53 | 93.12 ± 1.32 | 93.73 ± 1.36 |
AA | 88.01 ± 0.94 | 93.39 ± 0.93 | 93.72 ± 1.35 | 94.57 ± 0.70 | 96.02 ± 0.86 | 96.27 ± 0.74 |
κ | 77.38 ± 1.56 | 88.16 ± 1.80 | 89.65 ± 2.10 | 89.40 ± 1.72 | 92.14 ± 1.50 | 92.83 ± 1.54 |
M | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
SVM | EMP | EPF | SVM-CK | MLR-GCK | SC-SSK | SC-MK | SVM-SSHK | ||
15 | OA | 70.85 ± 1.72 (8) | 74.64 ± 3.03 (7) | 82.40 ± 2.46 (3) | 76.11 ± 2.42 (6) | 82.17 ± 1.41 (4) | 83.29 ± 2.08 (2) | 81.83 ± 2.39 (5) | 83.31 ± 1.79 (1) |
AA | 81.41 ± 1.32 (8) | 85.18 ± 1.35 (7) | 90.89 ± 0.91 (1) | 85.25 ± 1.42 (6) | 89.13 ± 0.73 (5) | 89.76 ± 1.39 (4) | 90.68 ± 1.16 (2) | 90.30 ± 1.31 (3) | |
κ | 67.22 ± 1.90 (8) | 71.42 ± 3.25 (7) | 80.13 ± 2.70 (3) | 73.05 ± 2.65 (6) | 79.86 ± 1.53 (4) | 81.08 ± 2.33 (2) | 79.50 ± 2.66 (5) | 81.14 ± 1.97 (1) | |
20 | OA | 73.64 ± 1.11 (8) | 81.36 ± 1.86 (7) | 85.45 ± 1.37 (5) | 81.57 ± 1.53 (6) | 85.70 ± 0.75 (4) | 87.17 ± 2.25 (2) | 86.90 ± 1.55 (3) | 87.69 ± 1.39 (1) |
AA | 83.31 ± 1.61 (8) | 88.78 ± 1.25 (7) | 91.86 ± 2.25 (4) | 89.27 ± 1.31 (6) | 91.12 ± 0.74 (5) | 91.97 ± 1.60 (3) | 93.32 ± 0.88 (1) | 92.69 ± 1.21 (2) | |
κ | 70.33 ± 1.23 (8) | 78.86 ± 2.07 (7) | 83.53 ± 1.54 (5) | 79.14 ± 1.73 (6) | 83.76 ± 0.84 (4) | 85.44 ± 2.51 (2) | 85.15 ± 1.74 (3) | 86.01 ± 1.55 (1) | |
25 | OA | 76.25 ± 1.41 (8) | 84.51 ± 1.29 (7) | 87.57 ± 2.49 (5) | 85.68 ± 1.87 (6) | 88.53 ± 1.01 (3) | 89.46 ± 1.19 (2) | 88.39 ± 1.44 (4) | 89.87 ± 1.18 (1) |
AA | 84.66 ± 1.54 (8) | 90.72 ± 1.34 (7) | 92.74 ± 2.01 (5) | 91.63 ± 0.98 (6) | 92.79 ± 0.76 (4) | 92.89 ± 1.26 (3) | 94.26 ± 0.86 (1) | 93.87 ± 0.62 (2) | |
κ | 73.18 ± 1.54 (8) | 82.39 ± 1.44 (7) | 85.89 ± 2.79 (5) | 83.76 ± 2.08 (6) | 86.94 ± 1.13 (3) | 88.00 ± 1.33 (2) | 86.83 ± 1.62 (4) | 88.48 ± 1.33 (1) | |
30 | OA | 77.04 ± 1.13 (8) | 87.24 ± 1.32 (6) | 86.92 ± 2.05 (7) | 87.89 ± 1.25 (5) | 89.40 ± 0.80 (4) | 91.70 ± 1.39 (2) | 90.41 ± 1.44 (3) | 92.28 ± 0.83 (1) |
AA | 85.74 ± 0.89 (8) | 91.88 ± 0.98 (6) | 90.65 ± 1.80 (7) | 93.01 ± 0.52 (5) | 93.25 ± 0.44 (4) | 94.21 ± 0.89 (3) | 94.94 ± 1.06 (1) | 94.90 ± 0.80 (2) | |
κ | 74.05 ± 1.26 (8) | 85.45 ± 1.47 (6) | 85.11 ± 2.32 (7) | 86.22 ± 1.40 (5) | 87.92 ± 0.91 (4) | 90.52 ± 1.57 (2) | 89.09 ± 1.62 (3) | 91.18 ± 0.93 (1) | |
35 | OA | 79.08 ± 1.29 (8) | 87.87 ± 1.64 (7) | 90.22 ± 1.58 (5) | 89.11 ± 1.52 (6) | 90.55 ± 0.67 (4) | 92.63 ± 0.82 (3) | 92.75 ± 1.21 (2) | 92.83 ± 1.31 (1) |
AA | 86.76 ± 0.91 (8) | 92.51 ± 0.53 (7) | 92.71 ± 1.31 (6) | 94.00 ± 0.55 (5) | 94.16 ± 0.54 (4) | 94.84 ± 0.73 (3) | 96.07 ± 0.79 (1) | 95.84 ± 0.76 (2) | |
κ | 76.28 ± 1.41 (8) | 86.16 ± 1.84 (7) | 88.83 ± 1.78 (5) | 87.60 ± 1.70 (6) | 89.20 ± 0.75 (4) | 91.58 ± 0.94 (3) | 91.72 ± 1.36 (2) | 91.82 ± 1.49 (1) | |
40 | OA | 79.49 ± 1.47 (8) | 89.32 ± 1.27 (7) | 90.50 ± 2.09 (5) | 89.46 ± 1.29 (6) | 91.51 ± 0.76 (4) | 93.21 ± 0.95 (2) | 92.77 ± 1.63 (3) | 93.73 ± 1.36 (1) |
AA | 87.53 ± 0.95 (8) | 93.38 ± 0.47 (7) | 93.80 ± 0.97 (6) | 94.29 ± 0.53 (5) | 94.96 ± 0.51 (4) | 95.48 ± 0.69 (3) | 96.24 ± 0.65 (2) | 96.27 ± 0.74 (1) | |
κ | 76.72 ± 1.63 (8) | 87.78 ± 1.44 (7) | 89.15 ± 2.36 (5) | 88.00 ± 1.46 (6) | 90.29 ± 0.86 (4) | 92.22 ± 1.08 (2) | 91.74 ± 1.84 (3) | 92.83 ± 1.54 (1) | |
Average Rank | 8 | 6.83 | 4.94 | 5.72 | 4 | 2.5 | 2.67 | 1.33 |
Class | Kernels Used in the SVM Classifier | |||||
---|---|---|---|---|---|---|
Asphalt | 82.58 ± 3.97 | 98.42 ± 0.48 | 88.83 ± 5.70 | 98.48 ± 0.34 | 94.27 ± 2.25 | 98.75 ± 0.67 |
Meadows | 81.00 ± 3.71 | 97.37 ± 2.66 | 71.67 ± 6.58 | 97.42 ± 1.97 | 93.73 ± 2.74 | 98.14 ± 0.89 |
Gravel | 75.90 ± 2.48 | 95.79 ± 1.38 | 57.29 ± 5.77 | 95.95 ± 1.36 | 87.91 ± 3.03 | 96.20 ± 1.18 |
Trees | 77.53 ± 4.02 | 90.60 ± 3.24 | 57.50 ± 3.75 | 91.38 ± 2.71 | 87.25 ± 2.45 | 96.62 ± 1.16 |
Metal Sheets | 79.34 ± 4.40 | 91.44 ± 2.19 | 82.13 ± 5.29 | 92.07 ± 2.98 | 97.08 ± 1.36 | 98.46 ± 0.82 |
Bare Soil | 99.75 ± 0.20 | 99.49 ± 0.42 | 76.55 ± 4.17 | 99.66 ± 0.34 | 99.67 ± 0.26 | 99.89 ± 0.12 |
Bitumen | 99.56 ± 0.20 | 99.32 ± 0.74 | 93.90 ± 1.56 | 99.63 ± 0.20 | 99.07 ± 0.98 | 99.66 ± 0.20 |
Self-Blocking Bricks | 94.10 ± 2.78 | 98.50 ± 1.19 | 52.91 ± 3.78 | 98.43 ± 1.11 | 92.92 ± 2.66 | 98.25 ± 0.96 |
Shadow | 91.46 ± 2.11 | 98.69 ± 0.58 | 90.71 ± 4.69 | 98.64 ± 0.68 | 96.18 ± 1.99 | 98.90 ± 0.49 |
OA | 80.79 ± 1.92 | 93.73 ± 1.47 | 65.31 ± 1.95 | 94.19 ± 1.21 | 90.71 ± 1.49 | 97.35 ± 0.52 |
AA | 86.80 ± 0.86 | 96.62 ± 0.49 | 74.61 ± 1.50 | 96.85 ± 0.50 | 94.23 ± 0.84 | 98.32 ± 0.31 |
κ | 75.42 ± 2.25 | 91.80 ± 1.88 | 57.28 ± 2.15 | 92.38 ± 1.55 | 87.96 ± 1.87 | 96.50 ± 0.68 |
M | Methods | ||||||||
---|---|---|---|---|---|---|---|---|---|
SVM | EMP | EPF | SVM-CK | MLR-GCK | SC-SSK | SC-MK | SVM-SSHK | ||
15 | OA | 75.66 ± 4.01 (8) | 84.95 ± 3.20 (7) | 85.59 ± 3.95 (6) | 86.88 ± 3.00 (5) | 87.93 ± 2.32 (4) | 88.19 ± 1.69 (3) | 88.84 ± 1.99 (2) | 90.61 ± 2.50 (1) |
AA | 81.15 ± 2.00 (8) | 92.33 ± 1.36 (3) | 89.78 ± 1.84 (6) | 87.91 ± 1.70 (7) | 92.58 ± 0.93 (2) | 91.74 ± 1.13 (5) | 92.20 ± 1.87 (4) | 93.45 ± 1.66 (1) | |
κ | 68.94 ± 4.66 (8) | 80.82 ± 3.88 (7) | 81.41 ± 4.82 (6) | 82.93 ± 3.77 (5) | 84.46 ± 2.82 (4) | 84.70 ± 2.10 (3) | 85.54 ± 2.47 (2) | 87.94 ± 3.23 (1) | |
20 | OA | 77.62 ± 3.78 (8) | 87.62 ± 2.90 (6) | 87.35 ± 4.11 (7) | 88.89 ± 1.97 (5) | 90.33 ± 3.03 (3) | 90.23 ± 1.05 (4) | 91.69 ± 2.29 (2) | 92.26 ± 2.25 (1) |
AA | 83.14 ± 0.94 (8) | 94.30 ± 1.31 (3) | 91.26 ± 1.50 (6) | 89.82 ± 1.56 (7) | 92.58 ± 0.93 (5) | 93.66 ± 0.83 (4) | 94.71 ± 1.35 (2) | 95.80 ± 0.88 (1) | |
κ | 71.49 ± 4.20 (8) | 84.15 ± 3.52 (6) | 83.73 ± 4.89 (7) | 85.47 ± 2.52 (4) | 84.46 ± 2.82 (5) | 87.30 ± 1.30 (3) | 89.21 ± 2.89 (2) | 89.97 ± 2.84 (1) | |
25 | OA | 79.42 ± 3.67 (8) | 90.70 ± 1.99 (6) | 89.06 ± 4.15 (7) | 91.06 ± 1.87 (4) | 93.03 ± 1.15 (3) | 90.82 ± 1.41 (5) | 94.02 ± 1.68 (2) | 95.03 ± 1.46 (1) |
AA | 84.66 ± 1.49 (8) | 95.03 ± 1.24 (4) | 92.92 ± 1.83 (6) | 92.10 ± 1.01 (7) | 96.01 ± 0.65 (3) | 94.17 ± 0.88 (5) | 96.16 ± 0.80 (2) | 96.53 ± 0.89 (1) | |
κ | 73.72 ± 4.25 (8) | 87.91 ± 2.54 (6) | 85.91 ± 5.05 (7) | 88.30 ± 2.39 (4) | 90.90 ± 1.46 (3) | 88.04 ± 1.80 (5) | 92.15 ± 2.19 (2) | 93.47 ± 1.88 (1) | |
30 | OA | 82.25 ± 1.61 (8) | 90.93 ± 1.48 (7) | 91.91 ± 2.51 (5) | 91.62 ± 1.68 (6) | 93.04 ± 1.23 (3) | 92.18 ± 1.43 (4) | 94.46 ± 1.33 (2) | 95.98 ± 1.19 (1) |
AA | 86.07 ± 1.06 (8) | 95.28 ± 0.63 (4) | 93.75 ± 1.51 (6) | 92.05 ± 1.24 (7) | 95.93 ± 0.94 (3) | 94.48 ± 0.61 (5) | 96.59 ± 0.58 (2) | 97.25 ± 0.44 (1) | |
κ | 77.09 ± 2.00 (8) | 88.21 ± 1.85 (7) | 89.44 ± 3.23 (5) | 89.00 ± 2.16 (6) | 90.91 ± 1.58 (3) | 89.76 ± 1.78 (4) | 92.75 ± 1.70 (2) | 94.66 ± 1.44 (1) | |
35 | OA | 82.38 ± 1.17 (8) | 92.45 ± 1.28 (6) | 91.93 ± 1.56 (7) | 93.07 ± 0.86 (4) | 94.70 ± 1.35 (3) | 92.99 ± 0.67 (5) | 95.94 ± 0.87 (2) | 96.43 ± 1.00 (1) |
AA | 86.84 ± 0.94 (8) | 96.30 ± 0.66 (4) | 94.42 ± 1.04 (6) | 93.33 ± 0.41 (7) | 96.97 ± 0.42 (3) | 95.36 ± 0.73 (5) | 97.39 ± 0.42 (2) | 97.85 ± 0.40 (1) | |
κ | 77.32 ± 1.42 (8) | 90.16 ± 1.63 (6) | 89.49 ± 1.98 (7) | 90.88 ± 1.08 (4) | 93.05 ± 1.72 (3) | 90.81 ± 0.87 (5) | 94.66 ± 1.14 (2) | 95.31 ± 1.28 (1) | |
40 | OA | 83.46 ± 1.43 (8) | 93.55 ± 1.91 (6) | 93.61 ± 2.06 (4) | 93.55 ± 1.12 (5) | 95.14 ± 0.90 (3) | 93.05 ± 1.07 (7) | 96.27 ± 1.11 (2) | 97.35 ± 0.52 (1) |
AA | 87.26 ± 1.00 (8) | 96.46 ± 1.02 (4) | 95.52 ± 0.72 (5) | 93.51 ± 0.71 (7) | 97.12 ± 0.32 (3) | 95.30 ± 0.38 (6) | 97.68 ± 0.81 (2) | 98.32 ± 0.31 (1) | |
κ | 78.61 ± 1.73 (8) | 91.56 ± 2.47 (5) | 91.64 ± 2.61 (4) | 91.49 ± 1.44 (6) | 93.60 ± 1.16 (3) | 90.89 ± 1.34 (7) | 95.09 ± 1.44 (2) | 96.50 ± 0.68 (1) | |
Average Rank | 8 | 5.38 | 5.94 | 5.56 | 3.28 | 4.72 | 2.11 | 1 |
n | Classification Accuracy | |||||
---|---|---|---|---|---|---|
IP | UP | |||||
OA | AA | κ | OA | AA | κ | |
2 | 94.64 | 96.52 | 93.86 | 94.86 | 95.79 | 93.21 |
4 | 94.96 | 96.58 | 94.22 | 96.15 | 97.08 | 94.9 |
6 | 94.93 | 96.56 | 94.19 | 96.85 | 97.91 | 95.84 |
8 | 95.86 | 97.12 | 95.25 | 98.10 | 98.73 | 97.49 |
10 | 93.07 | 95.64 | 92.07 | 98.15 | 98.68 | 97.55 |
12 | 93.11 | 95.67 | 92.12 | 98.20 | 98.71 | 97.65 |
14 | 93.05 | 95.63 | 92.04 | 98.19 | 98.75 | 97.60 |
16 | 98.21 | 98.70 | 97.63 | |||
18 | 98.09 | 98.54 | 97.47 | |||
20 | 98.08 | 97.75 | 97.01 |
Option | Classification Accuracy | |||||
---|---|---|---|---|---|---|
IP | UP | |||||
OA | AA | κ | OA | AA | κ | |
PC 1 | 94.98 | 96.53 | 94.25 | 93.36 | 96.28 | 91.35 |
PC 1 + PC 2 | 95.02 | 96.54 | 94.28 | 97.67 | 98.42 | 96.91 |
PC 1 + PC 2 + PC 3 | 95.86 | 97.12 | 95.25 | 98.1 | 98.73 | 97.49 |
υ | Classification Accuracy | |||||
---|---|---|---|---|---|---|
IP | UP | |||||
OA | AA | κ | OA | AA | κ | |
0.05 | 95.19 | 96.58 | 94.49 | 96.98 | 97.20 | 96.00 |
0.1 | 94.58 | 96.2 | 93.79 | 97.23 | 98.26 | 96.34 |
0.2 | 93.49 | 95.87 | 92.53 | 98.10 | 98.73 | 97.49 |
0.3 | 95.86 | 97.12 | 95.25 | 96.08 | 97.32 | 94.80 |
0.4 | 94.82 | 96.13 | 94.05 | 91.91 | 95.52 | 89.43 |
0.5 | 90.88 | 94.81 | 89.57 | 95.26 | 97.40 | 93.76 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Duan, H. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sens. 2018, 10, 441. https://doi.org/10.3390/rs10030441
Wang Y, Duan H. Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sensing. 2018; 10(3):441. https://doi.org/10.3390/rs10030441
Chicago/Turabian StyleWang, Yi, and Hexiang Duan. 2018. "Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information" Remote Sensing 10, no. 3: 441. https://doi.org/10.3390/rs10030441
APA StyleWang, Y., & Duan, H. (2018). Classification of Hyperspectral Images by SVM Using a Composite Kernel by Employing Spectral, Spatial and Hierarchical Structure Information. Remote Sensing, 10(3), 441. https://doi.org/10.3390/rs10030441