Predictive Model for Detection of Depression Based on Uncertainty Analysis Methods †
Abstract
:1. Introduction
2. Related Work
3. A Predictive Model for Detecting Depression in Older Adults
3.1. Phase 1: Collection of Data
3.2. Phase 2. Data Preparation: Data Cleaning and Discretization
3.3. Phase 3. Statistical Grouping of Data Subset by Variable
8,2},{8,2.68,0},
{9,2.96,0},{10,2.45,0},{11,3.01,0},{12,2.71,1},{13,1.71,2},{14,2.01,2},{15,2.63,1},{16,3.06,0},
{17,2.71,1},
{18,3.61,0},{19,3.05,0},{20,2.95,0},{21,2.89,0},{22,2.72,1},{23,2.36,0},{24,3.6,0},{25,2.45,
1},{26,2.78,0},
{27,3.31,0},{28,2.75,1},{29,3.43,0},{30,3.05,0},{31,2.24,1},{32,2.98,0},{33,3.09,0},{34,2.7,
1},{35,2.74,1}, {36,2.79,0}}
{{1,2.21,1},{3,2.75,1},{12,2.71,1},{15,2.63,1},{17,2.71,1},{22,2.72,1},
{25,2.45,1},{28,2.75,1},{31,2.24,1}, {34,2.7,1},{35,2.74,1}}
{{2,1.55,0},{4,3,63,0},{8,2.68,0},{9,2.96,0},{10,2.45,0},{11,3.01,0},{16,3.06,0},
{18,3.61,0},{19,3.05,0},{20,2.95,0},{21,2.89,0},{23,2.36,0},{24,3.6,0},{26,2.78,0},{27,3.31,0},
{29,3.43,0}, {30,3.05,0}, {32,2.98,0},{33,3.09,0},{36,2.79,0}}
3.4. Phase 4. Building Our Predictive Model Using Fuzzy Theory
4. Model Evaluation
5. Conclusions and Future Work
Acknowledgments
References
- National Center of Technological Excellence in Health. Diagnosis and Treatment of Depression in the Elderly in the First Level of Care; National Health System: Mexico City, Mexico, 2011. (In Spanish)
- García-Peña, C.; Juárez Cedillo, T.; Gallegos-Carrillo, K.; Durán-Muñoz, C.; Sánchez-García, S. Depression in the Elderly People; a General Perspective; National Medical Center Siglo XXI; Mexican Institute of Social Security: Ciudad de México, Mexico, 2012. (In Spanish) [Google Scholar]
- Flores-Pacheco, S.; Huerta-Ramírez, Y.; Herrera-Ramos, O.; Alonso-Vazquez, O. Family and Religious Factors in Depression in Older Adults. J. Behav. Health Soc. Issues 2012, 3, 89–100. [Google Scholar]
- Douglas, C.N. Depression if Elderly People; Geriatrics National Institute: Mexico City, Mexico, 2010. (In Spanish)
- Becerra Pino, M. Depression in the Elderly; Psychiatrist and Psychogeriatrics, Department of Mental Health and Psychiatry, Faculty of Medicine of the UNAM: Mexico City, Mexico, 2013.
- Campos, W. Detection of Social Isolation in Elderly through Environmental Intelligence and Social Networking Sites. Ph.D. Thesis, CENIDET, Cuernavaca, Morelos, Mexico, 2016. [Google Scholar]
- Hernández, Y.; Arroyo-Figueroa, G.; Sucar, E. A Model of Affect and Learning for Intelligent Tutors. J. Univ. Comput. Sci. 2015, 21, 912–934. [Google Scholar]
- Sanchez, W.; Martínez, A.; Campos, W.; Estrada, H.; Pelechano, V. Inferring loneliness levels in older adults from smartphones. J. Ambient Intell. Smart Environ. 2015, 7, 85–98. [Google Scholar] [CrossRef]
- Kaveh, B.; Husain, H. Fuzzy Model on Human Emotions Recognition. In Proceedings of the 12th WSEAS International Conference on Applications of Computer Engineering (ACE’13), Cambridge, USA, 30 January–1 February 2013; pp. 77–82. [Google Scholar]
- Guido Silva, M.J.; Zamudio Rodríguez, V.M.; Puga Soberanes, H.J.; Baltazar Flores, M.D.; Carpio Valadez, J.M.; Lino Ramírez, C. Affective Computing Applied to Therapy Based Elderly People Games; XII Encuentro Participación de la Mujer en la Ciencia; Centro de Investigaciones en Óptica: León, México, 2015. (In Spanish) [Google Scholar]
- Mohan, A.; Talasila, V. Driver Emotional Status Recognition Using Fuzzy Logic in ADAS: An Indian Perspective. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2014, 4, 328–334. [Google Scholar]
- Alghowinem, S.; Goecke, R.; F Cohn, J.; Wagner, M.; Parker, G.; Breakspear, M. Cross-cultural detection of depression from nonverbal behavior. In Proceedings of the 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition (FG), Ljubljana, Slovenia, 4–8 May 2015. [Google Scholar]
- Cavazos-Rehg, P.A.; Krauss, M.J.; Sowles, S.; Connolly, S.; Rosas, C.; Bharadwaj, M.; Bierut, L.J. A content analysis of depression-related Tweets. Comput. Hum. Behav. 2016, 54, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Scherer, S.; Stratou, G.; Lucas, G.; Mahmoud, M.; Boberg, J.; Gratch, J.; Rizzo, A.; Morency, L. Automatic audiovisual behavior descriptors for psychological disorder analysis. Image Vis. Comput. J. 2014, 32, 648–658. [Google Scholar] [CrossRef]
- Beck, A.T.; Steer, R.A.; Brown, G.K. Depression Inventory BDI-II; Pearson Education, S.A.: Madrid, España, 2011. [Google Scholar]
- López, F.; Galán, F.; García, S. Introduction to FIWARE Open Ecosystem; Telefonica I+D, FIWARE Lab. Available online: https://es.slideshare.net/flopezaguilar/introduction-to-fiware-open-ecosystem (accessed on 16 October 2018).
- Fitbit Charge 2. How to Monitor Health and Physical Activity with Fitbit? Available online: http://help.fitbit.com/articles/es/Help_article/1955/?l=es&fs=Search&pn=1 (accessed on 16 October 2018).
- Mendenhall, W. Introduction to Probability and Statistics, 14th ed.; Cengage Learning: Boston, MA, USA, 2015; ISBN 9786074813050. [Google Scholar]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic Theory and Aplications; Prentice Hall: Upper Saddle River, NJ, USA, 1995; ISBN 0-13-101171-5. [Google Scholar]
- Ponce Cruz, P. Artificial Intelligence with Applications to Engineering, 1st ed.; Editorial Alfaomega: Mexico City, Mexico, 2010. (In Spanish) [Google Scholar]
Older Adult | Variables Related to the Use of the Mobile Phone | Physiological Variables | Depression Level | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | Polarity Values Obtained from SWePT | ||||||||||
7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||||||||
1 | 5 | 15 | 20 | 10 | 6 | 5 | M | P | M | P | 2.21 | 1020 | 1800 | 420 | 1020 | MEDIUM |
2 | 7 | 5 | 6 | 3 | 5 | 5 | P | M | M | M | 1.55 | 1502 | 1500 | 421 | 1019 | NULL |
3 | 1 | 0 | 20 | 3 | 1 | 2 | P | P | M | P | 2.75 | 1600 | 1765 | 422 | 1018 | MEDIUM |
4 | 1 | 4 | 0 | 0 | 0 | 1 | P | P | M | M | 3.63 | 636 | 1452 | 423 | 1017 | NULL |
5 | 10 | 20 | 0 | 0 | 2 | 2 | P | M | P | M | 2.52 | 752 | 1456 | 424 | 1016 | HIGH |
6 | 1 | 1 | 1 | 1 | 5 | 5 | N | N | P | M | 1.59 | 921 | 1036 | 652 | 788 | HIGH |
7 | 30 | 0 | 0 | 0 | 6 | 0 | N | N | M | M | 1.98 | 862 | 1025 | 592 | 848 | HIGH |
8 | 20 | 10 | 28 | 40 | 3 | 4 | P | P | P | P | 2.68 | 784 | 1475 | 427 | 1013 | NULL |
9 | 1 | 0 | 1 | 0 | 1 | 1 | M | P | M | P | 2.96 | 2602 | 1345 | 428 | 1012 | NULL |
10 | 5 | 7 | 0 | 3 | 5 | 5 | M | P | M | M | 2.45 | 854 | 1457 | 429 | 1011 | NULL |
Rules to Obtain the Level of Belonging of the Subset MEDIUMDSetAvrgDistTrav | Rules to Obtain the Level of Belonging of the Subset HIGHDSetAvrgDistTrav | Rules to Obtain the Level of Belonging of the Subset NULLDSetAvrgDistTrav | |
---|---|---|---|
Rule 1. | 2.21 ≤ x ≤ 2.44 → x − 2.21/2.44 − 2.21 | 2.21 ≤ x ≤ 2.44 → x − 2.21/2.44 − 2.21 | 2.21 ≤ x ≤ 2.44 → x − 2.21/2.44 − 2.21 |
Rule 2. | 2.44 ≤ x ≤ 2.75 → 1 | 2.44 ≤ x ≤ 2.75 → 1 | 2.44 ≤ x ≤ 2.75 → 1 |
Rule 3. | 2.75 ≤ x ≤ 2.74 → x − 2.75/2.74 − 2.75 | 2.75 ≤ x ≤ 2.74 → x − 2.75/2.74 − 2.75 | 2.75 ≤ x ≤ 2.74 → x − 2.75/2.74 − 2.75 |
Rule 4. | x > 2.75 → 0 | x > 2.75 → 0 | x > 2.75 → 0 |
Levels of Depression | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | % Depression |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HIGH | 45% | 27% | 30% | 12.2% | 23% | 11% | 2.2% | 21% | 3% | 3.4% | 1.5% | 11% | 3.4% | 1.2% | 1% | 13.3% |
MEDIUM | 52% | 71.3% | 50.1% | 86.5% | 74.5% | 71.5% | 95% | 72.9% | 89% | 76.5% | 76.9% | 78% | 91% | 88% | 89.6% | 77.54% |
NULL | 2.7% | 1.7% | 19.9% | 1.3% | 2.5% | 17.5% | 2.8% | 6.1% | 8% | 20.1% | 8.1% | 20.9% | 5.6% | 10.8% | 9.4% | 9.16% |
Older Adult | Age | Results of the Model | Questionnaire (Level of Depression) Yesavage Test | |||
---|---|---|---|---|---|---|
HIGH Level % | MEDIUM LEVEL % | NULL Level % | Depression Level (Based on the Highest Level in Percentage) | |||
1 | 69 | 0% | 37.7% | 62.3% | NULL | NULL |
2 | 61 | 71.2% | 28.8% | 0% | HIGH | HIGH |
3 | 67 | 52.1% | 41.5% | 6.2% | HIGH | MEDIUM |
4 | 66 | 0% | 17.8% | 82.2% | NULL | NULL |
5 | 62 | 74.4% | 25.6% | 0% | HIGH | HIGH |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, A.; Benítez, R.; Estrada, H.; Hernández, Y. Predictive Model for Detection of Depression Based on Uncertainty Analysis Methods. Proceedings 2018, 2, 551. https://doi.org/10.3390/proceedings2190551
Martínez A, Benítez R, Estrada H, Hernández Y. Predictive Model for Detection of Depression Based on Uncertainty Analysis Methods. Proceedings. 2018; 2(19):551. https://doi.org/10.3390/proceedings2190551
Chicago/Turabian StyleMartínez, Alicia, Richard Benítez, Hugo Estrada, and Yasmín Hernández. 2018. "Predictive Model for Detection of Depression Based on Uncertainty Analysis Methods" Proceedings 2, no. 19: 551. https://doi.org/10.3390/proceedings2190551
APA StyleMartínez, A., Benítez, R., Estrada, H., & Hernández, Y. (2018). Predictive Model for Detection of Depression Based on Uncertainty Analysis Methods. Proceedings, 2(19), 551. https://doi.org/10.3390/proceedings2190551