Perspectives on Socially Intelligent Conversational Agents
Abstract
:1. Introduction
- Which characteristics of social intelligence should future conversational agents be able to master?
- To what extent is there a consensus on the relevance of these characteristics among experts in the field?
2. Related Work
2.1. The Path towards Today’s Conversational Agents
- (1)
- Significant advances in language technologies, such as improved accuracy in speech recognition, increased anthropomorphism in text-to-speech synthesis, and greater flexibility in dialogue management, which overall have improved agents’ communication capabilities;
- (2)
- The emergence of the Semantic Web, whose machine-readable content structure helps CA technology answer more complex types of questions [1];
- (3)
- Smartphones and other mobile devices, which not only have long surpassed the power of earlier personal computers and now allow for the ubiquitous availability of sophisticated computing services, but also given access to contextual information such as users’ location, calendar, and contact details and thus foster personalization;
- (4)
- Widespread connectivity through faster wireless networks, almost ubiquitous Wi-Fi availability and the introduction of cloud computing, which enables resource-intensive tasks such as speech recognition to be performed on remote servers;
- (5)
- The increased effort that major technology companies such as Microsoft, Google, Amazon, or Apple have put into the development of CA technology and application domains, tackling ever more complex tasks such as education, sales, or different types of therapy.
2.2. Social Intelligence and Conversational Agents
Intelligence Dimension | Description |
---|---|
Abstract Intelligence | Symbolic reasoning |
Practical Intelligence | Getting things done |
Emotional Intelligence | Self-awareness and self-management |
Aesthetic Intelligence | Sense of form, design, music, art, and literature |
Kinesthetics Intelligence | Whole-body skills, dancing, or flying a jet fighter |
Social Intelligence | Dealing with people |
2.2.1. Situational Awareness
2.2.2. Presence
2.2.3. Authenticity
2.2.4. Clarity
2.2.5. Empathy
3. Method, Sampling and Study Procedure
4. Results
4.1. Identified Characteristics for Socially Intelligent Conversational Agents
4.2. Context-Related Acting
4.3. Reflective Language
4.4. Enculturation
4.5. Customizability
4.6. Engagement
4.7. Consistency
4.8. Depth
4.9. Continuous Interaction
4.10. Respectful Honesty
4.11. Justifiability
4.12. Establish/Maintain Relationships
4.13. Respectful Acting
4.14. Otherness
4.15. Individual Personality
5. Meta Reflections
6. Conclusions, Limitations, and Future Work
6.1. Limitations
6.2. Potential Future Research Directions
6.3. Final Thoughts
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McTear, M.F.; Callejas, Z.; Griol, D. The Conversational Interface; Springer: Cham, Switzerland, 2016; Volume 6. [Google Scholar]
- Ferrara, E.; Varol, O.; Davis, C.; Menczer, F.; Flammini, A. The rise of social bots. Commun. ACM 2016, 59, 96–104. [Google Scholar] [CrossRef]
- Machinery, C. Computing machinery and intelligence-AM Turing. Mind 1950, 59, 433. [Google Scholar]
- Saygin, A.P.; Cicekli, I.; Akman, V. Turing test: 50 years later. Minds Mach. 2000, 10, 463–518. [Google Scholar] [CrossRef]
- De Ruyter, B.; Saini, P.; Markopoulos, P.; Van Breemen, A. Assessing the effects of building social intelligence in a robotic interface for the home. Interact. Comput. 2005, 17, 522–541. [Google Scholar] [CrossRef]
- Duffy, B.R. Anthropomorphism and the social robot. Robot. Auton. Syst. 2003, 42, 177–190. [Google Scholar] [CrossRef]
- Breazeal, C. Toward sociable robots. Robot. Auton. Syst. 2003, 42, 167–175. [Google Scholar] [CrossRef]
- Forlizzi, J. Robotic products to assist the aging population. Interactions 2005, 12, 16–18. [Google Scholar] [CrossRef]
- Du, X.; Zhao, X.; Wu, C.H.; Feng, K. Functionality, Emotion, and Acceptance of Artificial Intelligence Virtual Assistants: The Moderating Effect of Social Norms. J. Glob. Inf. Manag. (JGIM) 2021, 30, 1–21. [Google Scholar] [CrossRef]
- Justo, R.; Ben Letaifa, L.; Palmero, C.; Gonzalez-Fraile, E.; Torp Johansen, A.; Vázquez, A.; Cordasco, G.; Schlögl, S.; Fernández-Ruanova, B.; Silva, M.; et al. Analysis of the interaction between elderly people and a simulated virtual coach. J. Ambient. Intell. Humaniz. Comput. 2020, 11, 6125–6140. [Google Scholar] [CrossRef]
- Esposito, A.; Amorese, T.; Cuciniello, M.; Riviello, M.T.; Esposito, A.M.; Troncone, A.; Torres, M.I.; Schlögl, S.; Cordasco, G. Elder user’s attitude toward assistive virtual agents: The role of voice and gender. J. Ambient. Intell. Humaniz. Comput. 2021, 12, 4429–4436. [Google Scholar] [CrossRef]
- Gessl, A.S.; Schlögl, S.; Mevenkamp, N. On the perceptions and acceptance of artificially intelligent robotics and the psychology of the future elderly. Behav. Inf. Technol. 2019, 38, 1068–1087. [Google Scholar] [CrossRef]
- Shamekhi, A.; Czerwinski, M.; Mark, G.; Novotny, M.; Bennett, G.A. An exploratory study toward the preferred conversational style for compatible virtual agents. In Proceedings of the International Conference on Intelligent Virtual Agents, IVA 2016, Los Angeles, CA, USA, 20–23 September 2016; pp. 40–50. [Google Scholar]
- Clark, L.; Pantidi, N.; Cooney, O.; Doyle, P.; Garaialde, D.; Edwards, J.; Spillane, B.; Gilmartin, E.; Murad, C.; Munteanu, C.; et al. What makes a good conversation? Challenges in designing truly conversational agents. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Jeong, Y.; Lee, J.; Kang, Y. Exploring effects of conversational fillers on user perception of conversational agents. In Proceedings of the Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–6. [Google Scholar]
- Elkins, A.C.; Derrick, D.C. The sound of trust: Voice as a measurement of trust during interactions with embodied conversational agents. Group Decis. Negot. 2013, 22, 897–913. [Google Scholar] [CrossRef]
- Jaques, N.; McDuff, D.; Kim, Y.L.; Picard, R. Understanding and predicting bonding in conversations using thin slices of facial expressions and body language. In Proceedings of the International Conference on Intelligent Virtual Agents, IVA 2016, Los Angeles, CA, USA, 20–23 September 2016; pp. 64–74. [Google Scholar]
- Lee, S.K.; Kavya, P.; Lasser, S.C. Social interactions and relationships with an intelligent virtual agent. Int. J. Hum.-Comput. Stud. 2021, 150, 102608. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, A.V.; Agarwal, P. AI based Computational Trust Model for Intelligent Virtual Assistant. J. Inf. Syst. Telecommun. JIST 2021, 4, 263. [Google Scholar] [CrossRef]
- Glikson, E.; Woolley, A.W. Human trust in artificial intelligence: Review of empirical research. Acad. Manag. Ann. 2020, 14, 627–660. [Google Scholar] [CrossRef]
- Pitardi, V.; Marriott, H.R. Alexa, she’s not human but… Unveiling the drivers of consumers’ trust in voice-based artificial intelligence. Psychol. Mark. 2021, 38, 626–642. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, S.W.; Padget, J. Using social reasoning framework to guide normative behaviour of intelligent virtual agents. In Proceedings of the 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Miyazaki, Japan, 7–10 October 2018; pp. 2466–2471. [Google Scholar]
- Fitrianie, S.; Bruijnes, M.; Richards, D.; Bönsch, A.; Brinkman, W.P. The 19 unifying questionnaire constructs of artificial social agents: An iva community analysis. In Proceedings of the 20th ACM International Conference on Intelligent Virtual Agents, Virtual Event, UK, 20–22 October 2020; pp. 1–8. [Google Scholar]
- Nass, C.; Steuer, J.; Tauber, E.R. Computers are social actors. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA, USA, 24–28 April 1994; pp. 72–78. [Google Scholar]
- Heffernan, T. Fiction meets science: Ex Machina, artificial intelligence, and the robotics industry. In Cyborg Futures; Palgrave Macmillan Cham: London, UK, 2019; pp. 127–140. [Google Scholar]
- Mathur, M.B.; Reichling, D.B. Navigating a social world with robot partners: A quantitative cartography of the Uncanny Valley. Cognition 2016, 146, 22–32. [Google Scholar] [CrossRef]
- Fong, T.; Nourbakhsh, I.; Dautenhahn, K. A survey of socially interactive robots. Robot. Auton. Syst. 2003, 42, 143–166. [Google Scholar] [CrossRef]
- Bickmore, T.; Cassell, J. Social dialongue with embodied conversational agents. In Advances in Natural Multimodal Dialogue Systems; Springer: Dordrecht, Germany, 2005; pp. 23–54. [Google Scholar]
- Fincannon, T.; Barnes, L.E.; Murphy, R.R.; Riddle, D.L. Evidence of the need for social intelligence in rescue robots. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 2, pp. 1089–1095. [Google Scholar]
- Douglas-Cowie, E.; Cox, C.; Martin, J.C.; Devillers, L.; Cowie, R.; Sneddon, I.; McRorie, M.; Pelachaud, C.; Peters, C.; Lowry, O.; et al. The HUMAINE database. In Emotion-Oriented Systems; Springer: Berlin/Heidelberg, Germany, 2011; pp. 243–284. [Google Scholar]
- Gunes, H.; Pantic, M. Dimensional emotion prediction from spontaneous head gestures for interaction with sensitive artificial listeners. In Proceedings of the International Conference on Intelligent Virtual Agents, IVA 2010, Philadelphia, PA, USA, 27–30 August 2010; pp. 371–377. [Google Scholar]
- Petridis, S.; Pantic, M. Audiovisual laughter detection based on temporal features. In Proceedings of the 10th International Conference on Multimodal Interfaces, Chania, Greece, 20–22 October 2008; pp. 37–44. [Google Scholar]
- Niewiadomski, R.; Bevacqua, E.; Mancini, M.; Pelachaud, C. Greta: An interactive expressive eca system. In Proceedings of the 8th International Conference on Autonomous Agents and Multiagent Systems, Budapest, Hungary, 10–15 May 2009; Volume 2, pp. 1399–1400. [Google Scholar]
- Beinema, T.; Davison, D.; Reidsma, D.; Banos, O.; Bruijnes, M.; Donval, B.; Valero, Á.F.; Heylen, D.; Hofs, D.; Huizing, G.; et al. Agents United: An open platform for multi-agent conversational systems. In Proceedings of the 21st ACM International Conference on Intelligent Virtual Agents, Kyoto, Japan, 14–17 September 2021. [Google Scholar]
- DeVault, D.; Georgila, K.; Artstein, R.; Morbini, F.; Traum, D.; Scherer, S.; Rizzo, A.A.; Morency, L.P. Verbal indicators of psychological distress in interactive dialogue with a virtual human. In Proceedings of the SIGDIAL 2013 Conference, Metz, France, 22–24 August 2013; pp. 193–202. [Google Scholar]
- Lisetti, C.; Amini, R.; Yasavur, U.; Rishe, N. I can help you change! An empathic virtual agent delivers behavior change health interventions. ACM Trans. Manag. Inf. Syst. (TMIS) 2013, 4, 1–28. [Google Scholar] [CrossRef]
- Torres, M.I.; Olaso, J.M.; Montenegro, C.; Santana, R.; Vázquez, A.; Justo, R.; Lozano, J.A.; Schlögl, S.; Chollet, G.; Dugan, N.; et al. The empathic project: Mid-term achievements. In Proceedings of the 12th ACM International Conference on Pervasive Technologies Related to Assistive Environments, Rhodes, Greece, 5–7 June 2019; pp. 629–638. [Google Scholar]
- Schulte, J.; Rosenberg, C.; Thrun, S. Spontaneous, short-term interaction with mobile robots. In Proceedings of the 1999 IEEE International Conference on Robotics and Automation (Cat. No. 99CH36288C), Detroit, MI, USA, 10–15 May 1999; Volume 1, pp. 658–663. [Google Scholar]
- Dautenhahn, K. Ants don’t have friends—Thoughts on socially intelligent agents. Soc. Intell. Agents 1997, 97, 22–27. [Google Scholar]
- Albrecht, K. Social Intelligence: The New Science of Success; Jossey-Bass: New York, NY, USA, 2006. [Google Scholar]
- Wickens, C.D.; Hollands, J.G.; Banbury, S.; Parasuraman, R. Engineering Psychology and Human Performance; Psychology Press: New York, NY, USA, 2015. [Google Scholar] [CrossRef]
- Hoogendoorn, M.; van Lambalgen, R.M.; Treur, J. Modeling situation awareness in human-like agents using mental models. In Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence, Barcelona, Spain, 16–22 July 2011. [Google Scholar]
- Kornienko, S.; Kornienko, O.; Levi, P. Collective AI: Context awareness via communication. In Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI’05, Edinburgh, UK, 30 July–5 August 2005; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2005; pp. 1464–1470. [Google Scholar]
- Baylor, A.L. Promoting motivation with virtual agents and avatars: Role of visual presence and appearance. Philos. Trans. R. Soc. Lond. Ser. Biol. Sci. 2009, 364, 3559–3565. [Google Scholar] [CrossRef]
- Hone, K.; Akhtar, F.; Saffu, M. Affective agents to reduce user frustration: The role of agent embodiment. In Proceedings of the Human-Computer Interaction (HCI2003), Bath, UK, 22–27 June 2003. [Google Scholar]
- Kidd, C.; Breazeal, C. Effect of a robot on user perceptions. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 4, pp. 3559–3564. [Google Scholar]
- Lee, K.M.; Jung, Y.; Kim, J.; Kim, S.R. Are physically embodied social agents better than disembodied social agents?: The effects of physical embodiment, tactile interaction, and people’s loneliness in human–robot interaction. Int. J. Hum.-Comput. Stud. 2006, 64, 962–973. [Google Scholar] [CrossRef]
- Złotowski, J.; Sumioka, H.; Nishio, S.; Glas, D.F.; Bartneck, C.; Ishiguro, H. Appearance of a Robot Affects the Impact of Its Behaviour on Perceived Trustworthiness and Empathy. Paladyn. J. Behav. Robot. 2016, 7, 55–66. [Google Scholar] [CrossRef]
- Mori, M.; MacDorman, K.F.; Kageki, N. The uncanny valley [from the field]. IEEE Robot. Autom. Mag. 2012, 19, 98–100. [Google Scholar] [CrossRef]
- Siegel, M.; Breazeal, C.; Norton, M.I. Persuasive robotics: The influence of robot gender on human behavior. In Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA, 10–15 October 2009; pp. 2563–2568. [Google Scholar]
- Baylor, A.L.; Kim, Y. Pedagogical agent design: The impact of agent realism, gender, ethnicity, and instructional role. In Proceedings of the International Conference on Intelligent Tutoring Systems, Maceió, Brazil, 30 August–3 September 2004; Springer: Berlin/Heidelberg, Germany, 2004; pp. 592–603. [Google Scholar]
- Guadagno, R.E.; Blascovich, J.; Bailenson, J.N.; McCall, C. Virtual humans and persuasion: The effects of agency and behavioral realism. Media Psychol. 2007, 10, 1–22. [Google Scholar]
- Gulz, A.; Haake, M.; Tärning, B. Visual Gender and Its Motivational and Cognitive Effects: A User Study. Lund Univ. Cogn. Stud. 2007, 137, 1–22. [Google Scholar]
- Niederhoffer, K.G.; Pennebaker, J.W. Linguistic style matching in social interaction. J. Lang. Soc. Psychol. 2002, 21, 337–360. [Google Scholar] [CrossRef]
- Fabri, M.; Moore, D.; Hobbs, D. Expressive agents: Non-verbal communication in collaborative virtual environments. In Proceedings of the Autonomous Agents and Multi-Agent Systems (Embodied Conversational Agents), Bologna, Italy, 15–19 July 2002. [Google Scholar]
- Baylor, A.; Ebbers, S. The pedagogical agent split-persona effect: When two agents are better than one. In Proceedings of the EdMedia + Innovate Learning 2003, Honolulu, HI, USA, 2003; Lassner, D., McNaught, C., Eds.; Association for the Advancement of Computing in Education (AACE): Honolulu, HI, USA, 2003; pp. 459–462. [Google Scholar]
- Kim, Y.; Baylor, A.L.; PALS Group. Pedagogical Agents as Learning Companions: The Role of Agent Competency and Type of Interaction. Educ. Technol. Res. Dev. 2006, 54, 223–243. [Google Scholar] [CrossRef]
- Kahn, P.H.; Ishiguro, H.; Friedman, B.; Kanda, T. What is a Human?: Toward psychological benchmarks in the field of human-robot interaction. In Proceedings of the ROMAN 2006—The 15th IEEE International Symposium on Robot and Human Interactive Communication, Hatfield, UK, 6–8 September 2006; pp. 364–371. [Google Scholar] [CrossRef]
- Neururer, M.; Schlögl, S.; Brinkschulte, L.; Groth, A. Perceptions on authenticity in chat bots. Multimodal Technol. Interact. 2018, 2, 60. [Google Scholar] [CrossRef]
- Persson, P.; Laaksolahti, J.; Lönnqvist, P. Understanding socially intelligent agents—A multilayered phenomenon. IEEE Trans. Syst. Man Cybern. Part Syst. Hum. 2001, 31, 349–360. [Google Scholar] [CrossRef]
- Leite, I.; Pereira, A.; Castellano, G.; Mascarenhas, S.; Martinho, C.; Paiva, A. Modelling empathy in social robotic companions. In Proceedings of the Advances in User Modeling, Girona, Spain, 11–15 July 2011; Ardissono, L., Kuflik, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 135–147. [Google Scholar]
- Ono, M.; Fujita, M.; Yamada, S. Physiological and Psychological Responses to Expressions of Emotion and Empathy in Post-Stress Communication. J. Physiol. Anthropol. 2009, 28, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Miner, A.S.; Milstein, A.; Schueller, S.; Hegde, R.; Mangurian, C.; Linos, E. Smartphone-Based Conversational Agents and Responses to Questions About Mental Health, Interpersonal Violence, and Physical Health. JAMA Intern. Med. 2016, 176, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Motta, I.; Quaresma, M. Exploring the opinions of experts in conversational design: A Study on users’ mental models of voice assistants. In Proceedings of the International Conference on Human-Computer Interaction, Virtual Event, 26 June–1 July 2022; Springer: Cham, Switzerland, 2022; pp. 494–514. [Google Scholar]
- Fröhlich, M.; Hulm, P.; Alt, F. Under pressure. A user-centered threat model for cryptocurrency owners. In Proceedings of the 2021 4th International Conference on Blockchain Technology and Applications, Xi’an, China, 17–19 December 2021; pp. 39–50. [Google Scholar]
- Nelson, K.L.; Powell, B.J.; Langellier, B.; Lê-Scherban, F.; Shattuck, P.; Hoagwood, K.; Purtle, J. State Policies that Impact the Design of Children’s Mental Health Services: A Modified Delphi Study. Adm. Policy Ment. Health Ment. Health Serv. Res. 2022, 23, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Tiberius, V.; Gojowy, R.; Dabić, M. Forecasting the future of robo advisory: A three-stage Delphi study on economic, technological, and societal implications. Technol. Forecast. Soc. Chang. 2022, 182, 121824. [Google Scholar] [CrossRef]
- Bu, X.; Ng, P.H.; Tong, Y.; Chen, P.Q.; Fan, R.; Tang, Q.; Cheng, Q.; Li, S.; Cheng, A.S.; Liu, X.; et al. A Mobile-Based Virtual Reality Speech Rehabilitation App for Patients with Aphasia after Stroke: Development and Pilot Usability Study. JMIR Serious Games 2022, 10, e30196. [Google Scholar] [CrossRef]
- Ziglio, E.; Adler, M. Gazing into the Oracle: The Delphi Method and Its Application to Social Policy and Public Health; Kingsley: London, UK, 1996. [Google Scholar]
- Hjørland, B. The foundation of the concept of relevance. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 217–237. [Google Scholar] [CrossRef]
- Okoli, C.; Pawlowski, S. The Delphi method as a research tool: An example, design considerations and applications. Inf. Manag. 2004, 42, 15–29. [Google Scholar] [CrossRef]
- Gläser, J.; Laudel, G. Experteninterviews und Qualitative Inhaltsanalyse als Instrumente Rekonstruierender Untersuchungen; Lehrbuch, VS, Verl. für Sozialwiss: Wiesbaden, Germany, 2012. [Google Scholar]
- Mayring, P. Qualitative Content Analysis: Theoretical Foundation, Basic Procedures and Software Solution. AUT. 2014. Available online: https://www.semanticscholar.org/paper/Qualitative-content-analysis%3A-theoretical-basic-and-Mayring/18882a33873fc61b0f026f8ee31440a934eaa4a9 (accessed on 2 June 2022).
- Krüger, D.; Riemeier, T. Die qualitative Inhaltsanalyse—Eine Methode zur Auswertung von Interviews. In Methoden in der Naturwissenschaftsdidaktischen Forschung; Springer: Berlin/Heidelberg, Germany, 2014; pp. 133–145. [Google Scholar]
- Beech, B. Go the extra mile—Use the Delphi Technique. J. Nurs. Manag. 1999, 7, 281–288. [Google Scholar] [CrossRef]
- Hsu, C.C.; Sandford, B. The Delphi Technique: Making Sense of Consensus. Pract. Assess. Res. Eval. 2007, 12, 1–8. [Google Scholar]
- Skulmoski, G.J.; Hartman, F.T.; Krahn, J. The Delphi method for graduate research. J. Inf. Technol. Educ. Res. 2007, 6, 1–21. [Google Scholar] [CrossRef]
- Hasson, F.; Keeney, S.; Mckenna, H. Research guidelines for the Delphi Survey Technique. J. Adv. Nurs. 2000, 32, 1008–1015. [Google Scholar] [CrossRef]
- Holey, E.A.; Feeley, J.L.; Dixon, J.; Whittaker, V.J. An exploration of the use of simple statistics to measure consensus and stability in Delphi studies. BMC Med. Res. Methodol. 2007, 7, 52. [Google Scholar] [CrossRef]
- Paul, S.C.; Bartmann, N.; Clark, J.L. Customizability in conversational agents and their impact on health engagement. Hum. Behav. Emerg. Technol. 2021, 3, 1141–1152. [Google Scholar] [CrossRef]
- Pon-Barry, H.; Clark, B.; Schultz, K.; Bratt, E.O.; Peters, S.; Haley, D. Contextualizing reflective dialogue in a spoken conversational tutor. J. Educ. Technol. Soc. 2005, 8, 42–51. [Google Scholar]
- Sonlu, S.; Güdükbay, U.; Durupinar, F. A conversational agent framework with multi-modal personality expression. ACM Trans. Graph. (TOG) 2021, 40, 1–16. [Google Scholar] [CrossRef]
- Rato, D.; Couto, M.; Prada, R. Fitting the room: Social motivations for context-aware agents. In Proceedings of the 9th International Conference on Human-Agent Interaction, Virtual Event, Japan, 9–11 November 2021; pp. 39–46. [Google Scholar]
- Griol, D.; Callejas, Z. Mobile conversational agents for context-aware care applications. Cogn. Comput. 2016, 8, 336–356. [Google Scholar] [CrossRef]
- Mavropoulos, T.; Meditskos, G.; Symeonidis, S.; Kamateri, E.; Rousi, M.; Tzimikas, D.; Papageorgiou, L.; Eleftheriadis, C.; Adamopoulos, G.; Vrochidis, S.; et al. A context-aware conversational agent in the rehabilitation domain. Future Internet 2019, 11, 231. [Google Scholar] [CrossRef]
- Bradley, N.; Fritz, T.; Holmes, R. Context-aware conversational developer assistants. In Proceedings of the 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), Gothenburg, Sweden, 27 May–3 June 2018; pp. 993–1003. [Google Scholar]
- Kaptein, M.; Markopoulos, P.; de Ruyter, B.; Aarts, E. Two acts of social intelligence: The effects of mimicry and social praise on the evaluation of an artificial agent. AI Soc. 2011, 26, 261–273. [Google Scholar] [CrossRef]
- Hale, J.; Hamilton, A.F.D.C. Testing the relationship between mimicry, trust and rapport in virtual reality conversations. Sci. Rep. 2016, 6, 35295. [Google Scholar] [CrossRef]
- Jusoh, S. Intelligent conversational agent for online sales. In Proceedings of the 2018 10th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), Iasi, Romania, 28–30 June 2018; pp. 1–4. [Google Scholar]
- Gaffney, H.; Mansell, W.; Tai, S. Conversational agents in the treatment of mental health problems: Mixed-method systematic review. JMIR Ment. Health 2019, 6, e14166. [Google Scholar] [CrossRef]
- Wu, W.; Guo, Z.; Zhou, X.; Wu, H.; Zhang, X.; Lian, R.; Wang, H. Proactive human-machine conversation with explicit conversation goals. arXiv 2019, arXiv:1906.05572. [Google Scholar]
- Allbeck, J.M.; Badler, N.I. Towards behavioral consistency in animated agents. In Deformable Avatars; Springer: Boston, MA, USA, 2001; pp. 191–205. [Google Scholar]
- Bentahar, J.; Moulin, B.; Chaib-draa, B. Towards a formal framework for conversational agents. In Proceedings of the Agent Communication Languages and Conversation Policies AAMAS 2003 Workshop, Melbourne, Australia, 14 July 2003. [Google Scholar]
- Campos, J.; Kennedy, J.; Lehman, J.F. Challenges in exploiting conversational memory in human-agent interaction. In Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, Stockholm, Sweden, 10–15 July 2018; pp. 1649–1657. [Google Scholar]
- Xu, X.; Gou, Z.; Wu, W.; Niu, Z.Y.; Wu, H.; Wang, H.; Wang, S. Long Time No See! Open-Domain Conversation with Long-Term Persona Memory. arXiv 2022, arXiv:2203.05797. [Google Scholar]
- Bickmore, T.W.; Picard, R.W. Establishing and maintaining long-term human-computer relationships. ACM Trans. Comput.-Hum. Interact. (TOCHI) 2005, 12, 293–327. [Google Scholar] [CrossRef]
- Elkins, A.C.; Derrick, D.C.; Burgoon, J.K.; Nunamaker, J.F., Jr. Predicting users’ perceived trust in Embodied Conversational Agents using vocal dynamics. In Proceedings of the 2012 45th Hawaii International Conference on System Sciences, Maui, HI, USA, 4–7 January 2012; pp. 579–588. [Google Scholar]
- Seeger, A.M.; Pfeiffer, J.; Heinzl, A. When do we need a human? Anthropomorphic design and trustworthiness of conversational agents. In Proceedings of the SIGHCI 2017, AIS Electronic Library, Seoul, Korea, 10 December 2017. [Google Scholar]
- Müller, L.; Mattke, J.; Maier, C.; Weitzel, T.; Graser, H. Chatbot acceptance: A latent profile analysis on individuals’ trust in conversational agents. In Proceedings of the 2019 on Computers and People Research Conference, Nashville, TN, USA, 20–22 June 2019; pp. 35–42. [Google Scholar]
- Guo, Y.; Wang, J.; Wu, R.; Li, Z.; Sun, L. Designing for trust: A set of design principles to increase trust in chatbot. CCF Trans. Pervasive Comput. Interact. 2022, 1–8. [Google Scholar] [CrossRef]
- Bryson, J.J. Robots should be slaves. Close Engag. Artif. Companions Key Soc. Psychol. Ethical Des. Issues 2010, 8, 63–74. [Google Scholar]
- Pradhan, A.; Lazar, A. Hey Google, do you have a personality? Designing personality and personas for conversational agents. In Proceedings of the CUI 2021—3rd Conference on Conversational User Interfaces, Bilbao, Spain, 27–29 July 2021; pp. 1–4. [Google Scholar]
- Fussell, S.R.; Kiesler, S.; Setlock, L.D.; Yew, V. How people anthropomorphize robots. In Proceedings of the 3rd ACM/IEEE International Conference on Human Robot Interaction, HRI ’08, Amsterdam, The Netherlands, 12–15 March 2008; Association for Computing Machinery: New York, NY, USA, 2008; pp. 145–152. [Google Scholar] [CrossRef]
- Powers, A.; Kiesler, S. The advisor robot: Tracing people’s mental model from a robot’s physical attributes. In Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction, HRI ’06, Salt Lake City, UT, USA, 2–3 March 2006; Association for Computing Machinery: New York, NY, USA, 2006; pp. 218–225. [Google Scholar] [CrossRef]
- Coeckelbergh, M. Moral appearances: Emotions, robots, and human morality. Ethics Inf. Technol. 2010, 12, 235–241. [Google Scholar] [CrossRef]
- Monnier, D. Woebot: A continuation of and an end to psychotherapy? Psychotherapies 2020, 40, 71–78. [Google Scholar]
- Inkster, B.; Sarda, S.; Subramanian, V. An empathy-driven, conversational artificial intelligence agent (Wysa) for digital mental well-being: Real-world data evaluation mixed-methods study. JMIR mHealth uHealth 2018, 6, e12106. [Google Scholar] [CrossRef]
- Schlimbach, R.; Rinn, H.; Markgraf, D.; Robra-Bissantz, S. A literature review on pedagogical conversational agent adaptation. In Proceedings of the Pacific Asia Conference on Information System, PACIS 2022, Virtual Conference, Sydney, Australia, 5–9 July 2022. [Google Scholar]
- Khalil, M.; Rambech, M. Eduino: A telegram learning-based platform and chatbot in higher education. In Proceedings of the International Conference on Human-Computer Interaction, Online, 26 June–1 July 2022; Learning and Collaboration Technologies. Novel Technological Environments; Zaphiris, P., Ioannou, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 188–204. [Google Scholar]
- Soares, A.M.; Camacho, C.; Elmashhara, M.G. Understanding the impact of chatbots on purchase intention. In Proceedings of the World Conference on Information Systems and Technologies, Budva, Montenegro, 12–14 April 2022; pp. 462–472. [Google Scholar]
- Alnefaie, A.; Singh, S.; Kocaballi, A.B.; Prasad, M. Factors influencing artificial intelligence conversational agents usage in the E-commerce field: A systematic. In Proceedings of the ACIS 2021, Sydney, Australia, 8–10 December 2021. [Google Scholar]
No. | Sex | Age | Location | Placement | Expertise and/or Field of Work |
---|---|---|---|---|---|
E01 | M | 25–34 | APAC | Academia | Methods and Philosophy of Agent-based Social Simulation; |
E02 | M | 55–64 | EMEA | Academia | Cybersecurity, mHealth, and Computer-mediated Communications; |
E03 | M | 35–44 | AMER | Academia | Artificial Intelligence, Natural Language Processing, Human–Computer Interaction; |
E04 | M | 45–54 | EMEA | Academia | Artificial intelligence, Assistive Technologies, Data Science; |
E05 | M | 65+ | EMEA | Academia | Cybernetics, Psycholinguistics, Neurosciences and Cognitive Psychology; |
E06 | F | 45–54 | APAC | Academia | Linguistics, Cognition and Computation; |
E07 | M | 35–44 | AMER | Academia | Artificial Intelligence in Education, Serious Games, Intelligent Synthetic Agents; |
E08 | M | 35–44 | EMEA | Academia | Ethics of Artificial Intelligence, Human Enhancement Ethics, Animal Ethics; |
E09 | M | 25–34 | EMEA | Academia | Multimedia User Interfaces, Semantic Computing, and Search Engines; |
E10 | M | 25–34 | APAC | Academia | Human–Robot Interaction, Social Robotics, Embodied Conversational Agents; |
E11 | M | 25–34 | AMER | Academia | Cognitive Science, Machine Learning, Computational Linguistics; |
E12 | M | 45–54 | EMEA | Industry | Chief Scientist: Robotics company; |
E13 | W | 35–44 | EMEA | Industry | Scientist: Multinational consumer technology company; |
E14 | M | 25–34 | EMEA | Industry | Computational Linguist: Multinational internet technology company; |
E15 | M | 45–54 | EMEA | Industry | Co-founder: Voice platform company; |
E16 | F | 35–44 | AMER | Industry | Engineer: Industrial design agency developing robots; |
E17 | F | 45–54 | AMER | Industry | Product Designer: Multinational social media and networking company; |
E18 | M | 35–44 | AMER | Industry | Head of Development: Artificial intelligence marketplace; |
E19 | M | 25–34 | EMEA | Industry | Consultant: Professional services and auditing company; |
E20 | M | 25–34 | EMEA | Industry | Product Manager: AI platform company; |
E21 | M | 35–44 | AMER | Industry | Engineer: Multinational IT company; |
Characteristic | MeanR2 | MedianR2 | SDR2 | IQRR2 | MeanR3 | MedianR3 | SDR3 | IQRR3 | MeanΔ | MedianΔ | SDΔ | IQRΔ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Context-related Acting | 6.19 | 7.00 | 1.03 | 1.00 | 6.38 | 7.00 | 0.74 | 1.00 | 0.19 | 0.00 | −0.29 | 0.00 |
6.10 | 6.00 | 1.04 | 1.00 | 6.33 | 6.00 | 0.73 | 1.00 | 0.24 | 0.00 | −0.31 | 0.00 | |
Reflective Language | 5.76 | 6.00 | 0.77 | 1.00 | 5.71 | 6.00 | 0.72 | 1.00 | −0.05 | 0.00 | −0.05 | 0.00 |
5.48 | 5.00 | 0.87 | 1.00 | 5.43 | 5.00 | 0.81 | 1.00 | −0.05 | 0.00 | −0.06 | 0.00 | |
Enculturation | 5.95 | 6.00 | 1.16 | 1.00 | 6.19 | 6.00 | 0.81 | 1.00 | 0.24 | 0.00 | −0.35 | 0.00 |
5.76 | 6.00 | 1.09 | 2.00 | 5.90 | 6.00 | 0.89 | 2.00 | 0.14 | 0.00 | −0.20 | 0.00 | |
Customizability | 5.67 | 6.00 | 1.02 | 1.00 | 5.71 | 6.00 | 0.96 | 1.00 | 0.05 | 0.00 | −0.06 | 0.00 |
5.38 | 5.00 | 1.20 | 2.00 | 5.29 | 5.00 | 0.96 | 1.00 | −0.10 | 0.00 | −0.25 | −1.00 | |
Engagement | 5.33 | 5.00 | 1.20 | 1.00 | 5.33 | 5.00 | 0.97 | 1.00 | 0.00 | 0.00 | −0.23 | 0.00 |
5.19 | 5.00 | 1.33 | 2.00 | 5.05 | 5.00 | 0.97 | 0.00 | −0.14 | 0.00 | −0.35 | −2.00 | |
Consistency | 5.52 | 6.00 | 1.12 | 1.00 | 5.67 | 6.00 | 1.06 | 1.00 | 0.14 | 0.00 | −0.06 | 0.00 |
5.43 | 6.00 | 1.40 | 3.00 | 5.62 | 6.00 | 1.12 | 2.00 | 0.19 | 0.00 | −0.28 | −1.00 | |
Depth | 5.62 | 5.00 | 1.24 | 2.00 | 5.29 | 5.00 | 1.10 | 1.00 | −0.33 | 0.00 | −0.14 | −1.00 |
5.10 | 5.00 | 1.61 | 3.00 | 5.00 | 5.00 | 1.18 | 1.00 | −0.10 | 0.00 | −0.43 | −2.00 | |
Continuous Interaction | 5.24 | 5.00 | 1.22 | 1.00 | 5.19 | 5.00 | 1.17 | 1.00 | −0.05 | 0.00 | −0.05 | 0.00 |
5.10 | 6.00 | 1.45 | 2.00 | 5.33 | 6.00 | 1.24 | 2.00 | 0.24 | 0.00 | −0.21 | 0.00 | |
Respectful Honesty | 5.81 | 6.00 | 1.08 | 2.00 | 5.76 | 6.00 | 1.18 | 1.00 | −0.05 | 0.00 | 0.10 | −1.00 |
5.90 | 6.00 | 1.04 | 1.00 | 5.90 | 6.00 | 1.18 | 1.00 | 0.00 | 0.00 | 0.13 | 0.00 | |
Justifiability | 5.52 | 6.00 | 1.33 | 1.00 | 5.57 | 6.00 | 1.21 | 1.00 | 0.05 | 0.00 | −0.12 | 0.00 |
5.48 | 6.00 | 1.25 | 1.00 | 5.38 | 6.00 | 1.32 | 1.00 | −0.10 | 0.00 | 0.07 | 0.00 | |
Establish/Maintain Relationships | 5.43 | 6.00 | 1.54 | 1.00 | 5.48 | 6.00 | 1.44 | 1.00 | 0.05 | 0.00 | −0.10 | 0.00 |
5.19 | 5.00 | 1.54 | 1.00 | 5.14 | 5.00 | 1.42 | 1.00 | −0.05 | 0.00 | −0.11 | 0.00 | |
Respectful Acting | 5.57 | 6.00 | 1.43 | 2.00 | 5.57 | 6.00 | 1.43 | 2.00 | 0.00 | 0.00 | 0.00 | 0.00 |
5.24 | 5.00 | 1.45 | 3.00 | 5.24 | 5.00 | 1.45 | 3.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
Otherness | 5.00 | 5.00 | 1.58 | 2.00 | 5.05 | 5.00 | 1.56 | 2.00 | 0.05 | 0.00 | −0.02 | 0.00 |
4.52 | 5.00 | 1.81 | 3.00 | 4.52 | 5.00 | 1.78 | 3.00 | 0.00 | 0.00 | −0.03 | 0.00 | |
Individual Personality | 4.95 | 5.00 | 1.75 | 2.00 | 4.95 | 5.00 | 1.69 | 2.00 | 0.00 | 0.00 | −0.06 | 0.00 |
3.81 | 4.00 | 1.78 | 2.00 | 3.86 | 4.00 | 1.80 | 2.00 | 0.05 | 0.00 | 0.02 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brinkschulte, L.; Schlögl, S.; Monz, A.; Schöttle, P.; Janetschek, M. Perspectives on Socially Intelligent Conversational Agents. Multimodal Technol. Interact. 2022, 6, 62. https://doi.org/10.3390/mti6080062
Brinkschulte L, Schlögl S, Monz A, Schöttle P, Janetschek M. Perspectives on Socially Intelligent Conversational Agents. Multimodal Technologies and Interaction. 2022; 6(8):62. https://doi.org/10.3390/mti6080062
Chicago/Turabian StyleBrinkschulte, Luisa, Stephan Schlögl, Alexander Monz, Pascal Schöttle, and Matthias Janetschek. 2022. "Perspectives on Socially Intelligent Conversational Agents" Multimodal Technologies and Interaction 6, no. 8: 62. https://doi.org/10.3390/mti6080062
APA StyleBrinkschulte, L., Schlögl, S., Monz, A., Schöttle, P., & Janetschek, M. (2022). Perspectives on Socially Intelligent Conversational Agents. Multimodal Technologies and Interaction, 6(8), 62. https://doi.org/10.3390/mti6080062