An Adaptive Embedding Strength Watermarking Algorithm Based on Shearlets’ Capture Directional Features
Abstract
:1. Introduction
- The watermarking algorithm in the domain of DWT is improved by using shearlet transform. The embedding position is selected on the basis of DWT and NSST to improve the robustness.
- The ABC algorithm and the improved optimized function is used to optimize the embedding strength to achieve higher robustness.
- The principle components of the watermark are embedded into the host image to solve the false positive problem of singular value decomposition.
2. Preliminaries
2.1. Discrete Wavelet Transform (DWT)
2.2. Non-Subsampled Shearlet Transform (NSST)
2.3. Singular Value Decomposition (SVD)
2.4. Artificial Bee Colony (ABC)
3. The Proposed Scheme
3.1. The Watermark Embedding Scheme
3.2. The Watermark Extracting Scheme
3.3. Optimization of Embedding Strength
4. Results and Analysis
4.1. Imperceptibility Analysis
4.2. Robustness Analysis
4.2.1. Robustness Results
4.2.2. Comparative Analysis
Optimization of Embedding Strength Comparison
Comparison of Robustness
4.3. False Positive Problem
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Najafi, E.; Loukhaoukha, K. Hybrid secure and robust image watermarking scheme based on SVD and sharp frequency localized contourlet transform. J. Inf. Secur. Appl. 2019, 44, 144–156. [Google Scholar] [CrossRef]
- Arumugham, S.; Rajagopalan, S.; Rayappan, J.B.B.; Amirtharajan, R. Tamper-resistant secure medical image carrier: An IWT–SVD–Chaos–FPGA combination. Arab. J. Sci. Eng. 2019, 44, 9561–9580. [Google Scholar] [CrossRef]
- Bhinder, P.; Singh, K.; Jindal, N. Image-adaptive watermarking using maximum likelihood decoder for medical images. Multimed. Tools Appl. 2018, 77, 10303–10328. [Google Scholar] [CrossRef]
- Huang, Y.; Niu, B.N.; Guan, H.; Zhang, S.W. Enhancing image watermarking with adaptive embedding parameter and PSNR guarantee. IEEE Trans. Multimed. 2019, 21, 2447–2460. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Cao, C.J.; Ma, J.X. An adaptive digital watermarking scheme based on support vector machines and optimized genetic algorithm. Math. Probl. Eng. 2018. [Google Scholar] [CrossRef]
- Kang, X.B.; Chen, Y.J.; Zhao, F.; Lin, G.F. Multi-dimensional particle swarm optimization for robust blind image watermarking using intertwining logistic map and hybrid domain. Soft Comput. 2019, 24, 10561–10584. [Google Scholar] [CrossRef]
- Kuraparthi, S.; Kollati, M.; Kora, P. Robust optimized discrete wavelet transform-singular value decomposition based video watermarking. Trait. Signal 2019, 36, 565–573. [Google Scholar] [CrossRef]
- Cui, X.C.; Niu, Y.Y.; Zheng, X.W.; Han, Y.S. An optimized digital watermarking algorithm in wavelet domain based on differential evolution for color image. PLoS ONE 2018, 13, e0196306. [Google Scholar] [CrossRef] [Green Version]
- Ansari, I.A.; Pant, M. Multipurpose image watermarking in the domain of DWT based on SVD and ABC. Pattern Recogn. Lett. 2017, 94, 228–236. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, Y.; Wei, X. An improved robust and adaptive watermarking algorithm based on DCT. J. Appl. Res. Technol. 2012, 10, 405–415. [Google Scholar] [CrossRef]
- Hamidi, M.; El Haziti, M.; Cherifi, H.; El Hassouni, M. Hybrid blind robust image watermarking technique based on DFT-DCT and Arnold transform. Multimed. Tools Appl. 2018, 77, 27181–27241. [Google Scholar] [CrossRef] [Green Version]
- Abdulrahman, A.K.; Ozturk, S. A novel hybrid DCT and DWT based robust watermarking algorithm for color images. Multimed. Tools Appl. 2018, 78, 17027–17049. [Google Scholar] [CrossRef]
- Wang, B.W.; Zhao, P. An adaptive image watermarking method combining SVD and Wang-Landau sampling in DWT domain. Mathematics 2020, 8, 691. [Google Scholar] [CrossRef]
- Islam, M.; Roy, A.; Laskar, R.H. SVM-based robust image watermarking technique in LWT domain using different sub-bands. Neural Comput. Appl. 2020, 32, 1379–1403. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, H.; Sharma, J.B. An adaptive color image watermarking using RDWT-SVD and artificial bee colony based quality metric strength factor optimization. Appl. Soft Comput. 2019, 84, 105696. [Google Scholar] [CrossRef]
- Gao, X.B.; Lu, W.; Tao, D.C.; Li, X.L. Image quality assessment based on multiscale geometric analysis. IEEE Trans. Image Process. 2009, 18, 1409–1423. [Google Scholar]
- Mardanpour, M.; Chahooki, M.A.Z. Robust transparent image watermarking with Shearlet transform and bidiagonal singular value decomposition. AEU Int. J. Electron. Commun. 2016, 70, 790–798. [Google Scholar] [CrossRef]
- Liu, X.Y.; Wang, Y.F.; Du, J.Y.; Liao, S.H.; Lou, J.T.; Zou, B.J. Robust hybrid image watermarking scheme based on KAZE features and IWT-SVD. Multimed. Tools Appl. 2019, 78, 6355–6384. [Google Scholar] [CrossRef]
- Araghi, T.K.; Abd Manaf, A.; Araghi, S.K. A secure blind discrete wavelet transform based watermarking scheme using two-level singular value decomposition. Expert Syst. Appl. 2018, 112, 208–228. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Pant, M.; Siarry, P. A reliable image watermarking scheme based on redistributed image normalization and SVD. Discret. Dyn. Nat. Soc. 2016, 2016, 3263587. [Google Scholar] [CrossRef] [Green Version]
- Vali, M.H.; Aghagolzadeh, A.; Baleghi, Y. Optimized watermarking technique using self-adaptive differential evolution based on redundant discrete wavelet transform and singular value decomposition. Expert Syst. Appl. 2018, 114, 296–312. [Google Scholar] [CrossRef]
- Makbol, N.M.; Khoo, B.E.; Rassem, T.H.; Loukhaoukha, K. A new reliable optimized image watermarking scheme based on the integer wavelet transform and singular value decomposition for copyright protection. Inform. Sci. 2017, 417, 381–400. [Google Scholar] [CrossRef]
- Ali, M.; Ahn, C.W.; Siarry, P. Differential evolution algorithm for the selection of optimal scaling factors in image watermarking. Eng. Appl. Artif. Intell. 2014, 14, 15–26. [Google Scholar] [CrossRef]
- Lakrissi, Y.; Saaidi, A.; Essahlaoui, A. Novel dynamic color image watermarking based on DWT-SVD and the human visual system. Multimed. Tools Appl. 2017, 77, 13531–13555. [Google Scholar] [CrossRef]
- Yadav, N. DWT-SVD-WHT watermarking using varying strength factor derived from means of the WHT coefficients. Arab. J. Sci. Eng. 2018, 43, 4131–4143. [Google Scholar] [CrossRef]
- Araghi, T.K.; Abd Manaf, A. An enhanced hybrid image watermarking scheme for security of medical and non-medical images based on DWT and 2-D SVD. Future Gener. Comp. Syst. 2019, 101, 1223–1246. [Google Scholar] [CrossRef]
- Li, Y.W.; Song, W.; Zhao, X.B.; Wang, J.; Zhao, L.Z. A novel image tamper detection and self-recovery algorithm based on watermarking and chaotic system. Mathematics 2019, 7, 955. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Xu, W.S.; Zhang, S.L.; Fan, S.S.; Zhang, W.R. A strong robust zero-watermarking scheme based on shearlets’ high ability for capturing directional features. Math. Probl. Eng. 2016, 2016, 2643263. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.Y.; Liu, Y.N.; Li, S.; Yang, H.Y.; Niu, P.P. Robust image watermarking approach using polar harmonic transforms based geometric correction. Neurocomputing 2016, 174, 627–642. [Google Scholar] [CrossRef]
- Thanki, R.; Borra, S.; Dwivedi, V.; Borisagar, K. An efficient medical image watermarking scheme based on FDCuT–DCT. Eng. Sci. Technol. 2017, 20, 1366–1379. [Google Scholar] [CrossRef]
- Moosazadeh, M.; Ekbatanifard, G. A new DCT-based robust image watermarking method using teaching-learning-based optimization. Optik 2019, 47, 28–38. [Google Scholar] [CrossRef]
- Tan, Y.; Qin, J.H.; Xiang, X.Y.; Ma, W.T.; Pan, W.Y.; Xiong, N.N. A Robust Watermarking Scheme in YCbCr Color Space Based on Channel Coding. IEEE Access 2019, 7, 25026–25036. [Google Scholar] [CrossRef]
- Rakheja, P.; Vig, R.; Singh, P. An asymmetric watermarking scheme based on random decomposition in hybrid multi-resolution wavelet domain using 3D Lorenz chaotic system. Optik 2019, 198, 163289. [Google Scholar] [CrossRef]
- Zebbiche, K.; Khelifi, F.; Loukhaoukha, K. Robust additive watermarking in the DTCWT domain based on perceptual masking. Multimed. Tools Appl. 2018, 77, 21281–21304. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Chang, L.L.; Wang, C.P.; Li, J.; Wang, X.Y.; Shi, Y.Q. Robust image watermarking using invariant accurate polar harmonic Fourier moments and chaotic mapping. Signal Process. 2020, 172, 107544. [Google Scholar] [CrossRef]
Parameters | Values |
---|---|
Size of swarm | 20 |
Maximum iterations | 20 |
Limit | 10 |
Initialization range | [0.005, 0.1] |
Employed bees | 50% of size of swarm |
Onlooker bees | 50% of size of swarm |
Scout bees | Variable |
Attacks | Crop, filter, noise, compression, rotation, sharpen and translation. |
PSNR (dB) | Lena | Pepper | Airplane | Tiffany | Baboon | Sailboat | Flower | Goldhill | Soccer | Girl |
---|---|---|---|---|---|---|---|---|---|---|
UPC | 38.0088 | 38.0307 | 38.0023 | 38.0001 | 38.0073 | 38.0021 | 38.0073 | 38.0187 | 38.0001 | 38.0190 |
Logo | 38.0135 | 38.0041 | 38.0031 | 38.0048 | 38.000 | 38.0117 | 38.0003 | 38.0015 | 38.0087 | 38.0091 |
Attacks | Lena | Logo | Pepper | UPC |
---|---|---|---|---|
Centre crop 256 × 256 | ||||
Average filter (3,3) | ||||
Pepper and salt noise 0.1 | ||||
Rescale 0.25 | ||||
Rotation 45° | ||||
Translation 80 |
Attacks | Parameters | Lena | Pepper | ||
---|---|---|---|---|---|
UPC | Logo | UPC | Logo | ||
Contrast adjustment | 20% | 0.9971 | 0.9989 | 0.9964 | 0.9960 |
Crop | 128 × 128 | 0.9990 | 0.9972 | 0.9986 | 0.9967 |
256 × 256 | 0.9987 | 0.9976 | 0.9978 | 0.9925 | |
384 × 384 | 0.9982 | 0.9970 | 0.9620 | 0.9562 | |
Centre crop | 128 × 128 | 0.9992 | 0.9973 | 0.9986 | 0.9969 |
256 × 256 | 0.9987 | 0.9990 | 0.9986 | 0.9961 | |
384 × 384 | 0.9782 | 0.9978 | 0.9981 | 0.9939 | |
Gaussian filter | (2,2) | 0.9986 | 0.9970 | 0.9985 | 0.9939 |
(3,3) | 0.9986 | 0.9971 | 0.9986 | 0.9957 | |
(5,5) | 0.9986 | 0.9971 | 0.9986 | 0.9957 | |
Gaussian noise | 0.01 | 0.9987 | 0.9971 | 0.9986 | 0.9969 |
0.1 | 0.9868 | 0.9990 | 0.9960 | 0.9971 | |
0.3 | 0.9607 | 0.9972 | 0.9729 | 0.9952 | |
JPEG 2000 compression | 5:1 | 0.9986 | 0.9971 | 0.9986 | 0.9968 |
10:1 | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
20:1 | 0.9986 | 0.9971 | 0.9986 | 0.9969 | |
JPEG compression | 20% | 0.9986 | 0.9971 | 0.9986 | 0.9968 |
40% | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
60% | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
80% | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
100% | 0.9986 | 0.9971 | 0.9985 | 0.9967 | |
Average filter | (2,2) | 0.9986 | 0.9970 | 0.9985 | 0.9939 |
(3,3) | 0.9985 | 0.9946 | 0.9963 | 0.9871 | |
(5,5) | 0.9740 | 0.9680 | 0.9537 | 0.9430 | |
Median filter | (2,2) | 0.9986 | 0.9971 | 0.9986 | 0.9947 |
(3,3) | 0.9986 | 0.9970 | 0.9985 | 0.9943 | |
(5,5) | 0.9884 | 0.9832 | 0.9880 | 0.9791 | |
Motion blur | θ = 4, l = 7 | 0.9986 | 0.9954 | 0.9950 | 0.9862 |
Pepper and salt noise | 0.01 | 0.9986 | 0.9971 | 0.9986 | 0.9969 |
0.1 | 0.9990 | 0.9976 | 0.9985 | 0.9970 | |
0.3 | 0.9797 | 0.9986 | 0.9848 | 0.9969 | |
Rescale | 256 × 256 | 0.9986 | 0.9971 | 0.9985 | 0.9947 |
128 × 128 | 0.9752 | 0.9695 | 0.9712 | 0.9591 | |
1024 × 1024 | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
2048 × 2048 | 0.9986 | 0.9971 | 0.9986 | 0.9968 | |
Rotation | 5° | 0.9976 | 0.9972 | 0.9974 | 0.9959 |
−5° | 0.9987 | 0.9971 | 0.9944 | 0.9936 | |
45° | 0.9964 | 0.9970 | 0.9950 | 0.9970 | |
90° | 0.9700 | 0.9990 | 0.9875 | 0.9769 | |
180° | 0.9986 | 0.9971 | 0.9985 | 0.9968 | |
270° | 0.9678 | 0.9990 | 0.9875 | 0.9767 | |
Sharpen | 0.8 | 0.9900 | 0.9923 | 0.9900 | 0.9845 |
Speckle noise | 0.01 | 0.9986 | 0.9971 | 0.9986 | 0.9969 |
0.1 | 0.9992 | 0.9976 | 0.9985 | 0.9970 | |
0.3 | 0.9905 | 0.9990 | 0.9936 | 0.9971 | |
Translation | 20 | 0.9772 | 0.9979 | 0.9986 | 0.9960 |
40 | 0.9787 | 0.9983 | 0.9985 | 0.9934 | |
80 | 0.9820 | 0.9990 | 0.9960 | 0.9868 | |
160 | 0.9935 | 0.9976 | 0.9848 | 0.9744 | |
Weiner filter | (2,2) | 0.9986 | 0.9971 | 0.9986 | 0.9964 |
(3,3) | 0.9986 | 0.9971 | 0.9986 | 0.9952 | |
(5,5) | 0.9979 | 0.9942 | 0.9971 | 0.9896 | |
Histogram equalization | 0.9994 | 0.9987 | 0.9979 | 0.9965 |
Attacks | Parameters | Lena | Pepper | ||
---|---|---|---|---|---|
UPC | Logo | UPC | Logo | ||
Contrast adjustment | 20% | 0.0043 | 0.0012 | 0.0052 | 0.0046 |
Crop | 128 × 128 | 0.0015 | 0.0031 | 0.0020 | 0.0038 |
256 × 256 | 0.0020 | 0.0027 | 0.0032 | 0.0085 | |
384 × 384 | 0.0027 | 0.0034 | 0.0544 | 0.0504 | |
Centre crop | 128 × 128 | 0.0012 | 0.0031 | 0.0020 | 0.0034 |
256 × 256 | 0.0214 | 0.0012 | 0.0020 | 0.0044 | |
384 × 384 | 0.0313 | 0.0025 | 0.0027 | 0.0070 | |
Gaussian filter | (2,2) | 0.0020 | 0.0034 | 0.0023 | 0.0069 |
(3,3) | 0.0020 | 0.0033 | 0.0020 | 0.0048 | |
(5,5) | 0.0020 | 0.0033 | 0.0020 | 0.0049 | |
Gaussian noise | 0.01 | 0.0020 | 0.0033 | 0.0021 | 0.0037 |
0.1 | 0.0190 | 0.0011 | 0.0095 | 0.0033 | |
0.3 | 0.0570 | 0.0029 | 0.0346 | 0.0041 | |
JPEG 2000 compression | 5:1 | 0.0020 | 0.0033 | 0.0021 | 0.0037 |
12:1 | 0.0020 | 0.0033 | 0.0020 | 0.0036 | |
20:1 | 0.0020 | 0.0033 | 0.0020 | 0.0035 | |
JPEG compression | 20% | 0.0020 | 0.0033 | 0.0020 | 0.0037 |
40% | 0.0020 | 0.0033 | 0.0020 | 0.0037 | |
60% | 0.0020 | 0.0033 | 0.0020 | 0.0037 | |
80% | 0.0020 | 0.0033 | 0.0021 | 0.0037 | |
100% | 0.0020 | 0.0033 | 0.0021 | 0.0037 | |
Average filter | (2,2) | 0.0020 | 0.0034 | 0.0023 | 0.0069 |
(3,3) | 0.0021 | 0.0062 | 0.0054 | 0.0147 | |
(5,5) | 0.0375 | 0.0367 | 0.0663 | 0.0657 | |
Median filter | (2,2) | 0.0020 | 0.0033 | 0.0021 | 0.0060 |
(3,3) | 0.0020 | 0.0034 | 0.0022 | 0.0065 | |
(5,5) | 0.0167 | 0.0191 | 0.0173 | 0.0239 | |
Motion blur | θ = 4, l = 7 | 0.0021 | 0.0052 | 0.0073 | 0.0157 |
Pepper and salt noise | 0.01 | 0.0020 | 0.0033 | 0.0021 | 0.0035 |
0.1 | 0.0017 | 0.0027 | 0.0023 | 0.0033 | |
0.3 | 0.0295 | 0.0013 | 0.0204 | 0.0034 | |
Rescale | 256 × 256 | 0.0020 | 0.0033 | 0.0021 | 0.0060 |
128 × 128 | 0.0358 | 0.0350 | 0.0416 | 0.0472 | |
1024 × 1024 | 0.0020 | 0.0033 | 0.0020 | 0.0037 | |
2048 × 2048 | 0.0020 | 0.0033 | 0.0020 | 0.0037 | |
Rotation | 5° | 0.0035 | 0.0032 | 0.0037 | 0.0046 |
−5° | 0.0020 | 0.0033 | 0.0082 | 0.0072 | |
45° | 0.0052 | 0.0034 | 0.0073 | 0.0034 | |
90° | 0.0430 | 0.0011 | 0.0181 | 0.0262 | |
180° | 0.0020 | 0.0033 | 0.0023 | 0.0036 | |
270° | 0.0433 | 0.0012 | 0.0181 | 0.0265 | |
Sharpen | 0.8 | 0.0146 | 0.0087 | 0.0146 | 0.0178 |
Speckle noise | 0.01 | 0.0020 | 0.0033 | 0.0021 | 0.0037 |
0.1 | 0.0011 | 0.0030 | 0.0020 | 0.0034 | |
0.3 | 0.0133 | 0.0010 | 0.0095 | 0.0033 | |
Translation | 20 | 0.0327 | 0.0024 | 0.0020 | 0.0045 |
40 | 0.0307 | 0.0020 | 0.0022 | 0.0075 | |
80 | 0.0245 | 0.0011 | 0.0058 | 0.0151 | |
160 | 0.0095 | 0.0027 | 0.0220 | 0.0295 | |
Weiner filter | (2,2) | 0.0020 | 0.0033 | 0.0020 | 0.0041 |
(3,3) | 0.0020 | 0.0033 | 0.0020 | 0.0055 | |
(5,5) | 0.0030 | 0.0066 | 0.0043 | 0.0118 | |
Histogram equalization | − | 0.0009 | 0.0015 | 0.0031 | 0.0040 |
Attacks | Parameters | S-AES | Ansari [9] | Vali [21] | Makbol [22] | Sharma [15] | Mandanpour [17] | Wang [13] |
---|---|---|---|---|---|---|---|---|
Contrast adjustment | 20% | 0.9940 | 0.5806 | - | - | - | - | - |
Crop | 128 × 128 | 0.9986 | - | - | 0.9801 | - | 0.9400 | - |
256 × 256 | 0.9966 | - | 0.9686 | - | 0.9659 | - | - | |
Center Crop | 128 ×128 | 0.9970 | - | - | 0.9200 | - | - | - |
Gaussian filter | [3,3] | 0.9986 | 0.9898 | 0.9832 | 0.9874 | 0.9959 | 0.9900 | 0.9959 |
[5,5] | 0.9986 | - | 0.9899 | - | 0.9958 | 0.9900 | - | |
Gaussian noise | 0.001 | 0.9986 | 0.9105 | 0.9838 | 0.9810 | 0.9965 | 0.9900 | 0.9983 |
0.01 | 0.9986 | - | 0.9304 | 0.9712 | 0.9914 | 0.9800 | - | |
0.5 | 0.9400 | - | 0.8181 | - | 0.9082 | - | - | |
JPEG 2000 compression | 5:1 | 0.9986 | - | - | - | 0.9963 | - | - |
12:1 | 0.9986 | 0.9393 | - | - | - | - | - | |
20:1 | 0.9986 | - | - | - | 0.9959 | - | - | |
JPEG compression | 10% | 0.9986 | - | 0.9733 | - | 0.9954 | 0.9900 | - |
30% | 0.9986 | - | 0.9241 | 0.9930 | 0.9957 | 0.9900 | 0.9982 | |
50% | 0.9986 | 0.9706 | 0.9938 | 0.9811 | 0.9960 | 0.9900 | - | |
90% | 0.9986 | - | 0.9740 | - | 0.9962 | 0.9900 | - | |
Average filter | [2,2] | 0.9986 | - | - | - | 0.9955 | - | 0.9030 |
[3,3] | 0.9984 | 0.8353 | 0.9496 | 0.9796 | 0.9948 | 0.9700 | - | |
[5,5] | 0.9714 | - | - | - | 0.9917 | 0.9000 | - | |
Median filter | [2,2] | 0.9986 | - | - | 0.9802 | 0.9958 | 0.9900 | - |
[3,3] | 0.9986 | 0.9357 | 0.9716 | 0.9800 | 0.9955 | 0.9800 | 0.9971 | |
[5,5] | 0.9856 | - | 0.9603 | - | 0.9945 | 0.9600 | - | |
Motion blur | θ = 4, l = 7 | 0.9984 | 0.9575 | - | - | - | 0.7700 | - |
Pepper and salt noise | 0.01 | 0.9986 | - | 0.9688 | 0.9841 | 0.9916 | 0.9900 | 0.9868 |
0.1 | 0.9969 | - | 0.8924 | 0.9220 | 0.9832 | 0.9600 | - | |
0.3 | 0.9632 | - | 0.8227 | 0.9353 | - | - | - | |
Rescale | 0.5 times | 0.9986 | - | 0.9470 | 0.9808 | 0.9948 | 0.9800 | - |
0.25 times | 0.9986 | 0.9803 | 0.8289 | 0.9680 | 0.9903 | 0.8900 | 0.9977 | |
2 times | 0.9986 | - | 0.9705 | - | - | 0.9900 | - | |
4 times | 0.9986 | 0.9941 | - | - | 0.9961 | - | - | |
Rotation | 45° | 0.9932 | - | 0.9851 | 0.9779 | - | 0.9600 | 0.3928 |
−50° | 0.9818 | - | 0.9820 | - | - | 0.9200 | - | |
Speckle noise | 0.001 | 0.9986 | 0.9803 | 0.9953 | - | 0.9964 | 0.9900 | - |
0.01 | 0.9986 | - | 0.9666 | 0.9903 | 0.9899 | 0.9900 | 0.9955 | |
0.1 | 0.9979 | - | 0.9210 | 0.9578 | 0.9813 | 0.9700 | - | |
Translation | [10,10] | 0.9985 | - | 0.9715 | - | 0.9895 | 0.9900 | - |
[20,20] | 0.9746 | - | - | 0.9380 | 0.9814 | 0.9800 | - | |
[10,20] | 0.9984 | - | - | - | 0.9894 | - | - | |
[20,35] | 0.9855 | - | - | - | 0.9853 | - | - | |
[50,50] | 0.9985 | - | 0.9880 | - | 0.9728 | 0.9500 | - | |
Weiner filter | [2,2] | 0.9986 | - | - | - | 0.9960 | - | - |
[3,3] | 0.9986 | 0.9695 | 0.9940 | 0.9901 | 0.9953 | - | - | |
[5,5] | 0.9967 | - | 0.9533 | - | 0.9943 | - | - | |
Histogram equalization | - | 0.9974 | - | 0.9721 | 0.9532 | 0.9725 | 0.9800 | 0.8176 |
Attacks | Parameters | S-AES | Ma [35] | Wang [13] | Islam [14] | Liu [18] |
---|---|---|---|---|---|---|
Crop | 10% | 0.0015 | - | - | - | 0.0052 |
Center crop | 10% | 0.0012 | - | - | - | 0.0160 |
Gaussian filter | [3,3] | 0.0020 | - | 0.0087 | 0.0039 | 0.0246 |
JPEG compression | 20% | 0.0020 | 0.0065 | - | - | - |
30% | 0.0020 | 0.0065 | 0.0007 | 0.0098 | - | |
50% | 0.0020 | 0.0052 | - | 0.0059 | - | |
90% | 0.0020 | - | - | - | 0.0024 | |
Average filter | [3,3] | 0.0021 | - | 0.1187 | 0.0664 | 0.0248 |
Median filter | [3,3] | 0.0020 | 0.0104 | 0.0097 | - | 0.0125 |
Pepper and salt noise | 0.01 | 0.0020 | - | 0.0093 | 0.0488 | - |
Rescale | 256 × 256 | 0.0020 | 0.0658 | 0.0068 | - | 0.0466 |
1024 × 1024 | 0.0020 | 0.0052 | - | - | - | |
Rotation | 5° | 0.0035 | 0.0091 | - | 0.0352 | - |
15° | 0.0059 | 0.0078 | - | - | 0.1354 | |
25° | 0.0061 | 0.0117 | - | - | 0.0936 | |
35° | 0.0046 | 0.0195 | - | - | - | |
45° | 0.0052 | 0.0216 | 0.7780 | - | - | |
Speckle noise | 0.01 | 0.0020 | 0.0191 | 0.0131 | - | - |
Histogram equalization | - | 0.0009 | - | 0.3524 | 0.0156 | - |
Multiple attacks | S-AES | Sharma [15] | Lakrissi [24] |
---|---|---|---|
Pepper and salt noise (0.2) + JPEG compression (30%) | 0.9907 | 0.9868 | - |
Histogram equalization + Rotation (5°) | 0.9861 | 0.9626 | - |
Sharpen + Gaussian filter ([3,3]) | 0.9966 | - | 1 |
Gaussian noise (0.2) + crop (25%) | 0.9719 | 0.9613 | - |
Sharpen + Average filter ([5,5]) | 0.9956 | 0.9940 | - |
Rescale (0.5) + JPEG compression (50%) | 0.9986 | - | 0.9816 |
Gaussian noise (0.01) + JPEG compression (50%) | 0.9987 | - | 0.9633 |
Weiner filter ([5,5]) + Translation (10) | 0.9983 | 0.9899 | - |
Average filter ([5,5]) + Rotation (5°) | 0.9985 | 0.9910 | - |
Pepper and salt noise (0.2) + Gaussian noise (0.2) | 0.9653 | 0.9678 | - |
Gaussian noise (0.01) + Gaussian filter ([3,3]) + JPEG compression (50%) | 0.9986 | - | 0.9800 |
Pepper and salt noise (0.01) + contrast adjustment (20%) + JPEG compression (50%) | 0.9984 | - | 0.8798 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Q.; Liu, N.; Wang, F. An Adaptive Embedding Strength Watermarking Algorithm Based on Shearlets’ Capture Directional Features. Mathematics 2020, 8, 1377. https://doi.org/10.3390/math8081377
Zheng Q, Liu N, Wang F. An Adaptive Embedding Strength Watermarking Algorithm Based on Shearlets’ Capture Directional Features. Mathematics. 2020; 8(8):1377. https://doi.org/10.3390/math8081377
Chicago/Turabian StyleZheng, Qiumei, Nan Liu, and Fenghua Wang. 2020. "An Adaptive Embedding Strength Watermarking Algorithm Based on Shearlets’ Capture Directional Features" Mathematics 8, no. 8: 1377. https://doi.org/10.3390/math8081377
APA StyleZheng, Q., Liu, N., & Wang, F. (2020). An Adaptive Embedding Strength Watermarking Algorithm Based on Shearlets’ Capture Directional Features. Mathematics, 8(8), 1377. https://doi.org/10.3390/math8081377