Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Data Extraction
2.4. Quality Evaluation
3. Results
3.1. Predictive Models Applied in Diagnosis of CD
3.2. Model Accuracies along with advantages and limitations
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Acronyms
References
- Hamet, P.; Tremblay, J. Artificial intelligence in medicine. Metabolism 2017, 69, S36–S40. [Google Scholar] [CrossRef]
- Johnson, K.W.; Soto, J.T.; Glicksberg, B.S.; Shameer, K.; Miotto, R.; Ali, M.; Dudley, J.T. Artificial intelligence in cardiology. J. Am. Coll. Cardiol. 2018, 71, 2668–2679. [Google Scholar] [CrossRef] [PubMed]
- Bini, S. Artificial Intelligence, Machine Learning, Deep Learning, and Cognitive Computing: What Do These Terms Mean and How Will They Impact Health Care? J. Arthroplast. 2018, 33, 2358–2361. [Google Scholar] [CrossRef] [PubMed]
- Buch, V.H.; Ahmed, I.; Maruthappu, M. Artificial intelligence in medicine: Current trends and future possibilities. Br. J. Gen. Pract. 2018, 68, 143–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell. Appl. Comput. Eng. 2007, 160, 3–24. [Google Scholar]
- Deo, R.C. Machine Learning in Medicine. Circulation 2015, 132, 1920–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peek, N.; Combi, C.; Marin, R.; Bellazzi, R. Thirty years of artificial intelligence in medicine (AIME) conferences: A review of research themes. Artif. Intell. Med. 2015, 65, 61–73. [Google Scholar] [CrossRef]
- Battineni, G.; Sagaro, G.G.; Nalini, C.; Amenta, F.; Tayebati, S.K. Comparative Machine-Learning Approach: A Follow-Up Study on Type 2 Diabetes Predictions by Cross-Validation Methods. Machines 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Lo, Y.-C.; Rensi, S.; Torng, W.; Altman, R.B. Machine learning in chemoinformatics and drug discovery. Drug Discov. Today 2018, 23, 1538–1546. [Google Scholar] [CrossRef]
- Napolitano, G.; Marshall, A.; Hamilton, P.; Gavin, A.T. Machine learning classification of surgical pathology reports and chunk recognition for information extraction noise reduction. Artif. Intell. Med. 2016, 70, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Polat, H.; Mehr, H.D.; Cetin, A. Diagnosis of Chronic Kidney Disease Based on Support Vector Machine by Feature Selection Methods. J. Med. Syst. 2017, 41, 55. [Google Scholar] [CrossRef] [PubMed]
- Eslamizadeh, G.; Barati, R. Heart murmur detection based on wavelet transformation and a synergy between artificial neural network and modified neighbor annealing methods. Artif. Intell. Med. 2017, 78, 23–40. [Google Scholar] [CrossRef]
- Martinez, D.; Pitson, G.; Mackinlay, A.; Cavedon, L. Cross-hospital portability of information extraction of cancer staging information. Artif. Intell. Med. 2014, 62, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2000. [Google Scholar]
- PRISMA. PRISMA—Transparent Reporting of Systematic Reviews and Meta-analyses; Ottawa Hospital Research Institute: Ottawa, ON, Canada, 2015. [Google Scholar]
- Chen, Y.; Luo, Y.; Huang, W.; Hu, D.; Zheng, R.-Q.; Cong, S.-Z.; Meng, F.; Yang, H.; Lin, H.; Sun, Y.; et al. Machine-learning-based classification of real-time tissue elastography for hepatic fibrosis in patients with chronic hepatitis B. Comput. Boil. Med. 2017, 89, 18–23. [Google Scholar] [CrossRef]
- Shousha, H.I.; Awad, A.H.; Omran, D.; Elnegouly, M.M.; Mabrouk, M. Data Mining and Machine Learning Algorithms Using IL28B Genotype and Biochemical Markers Best Predicted Advanced Liver Fibrosis in Chronic Hepatitis C. Jpn. J. Infect. Dis. 2018, 71, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.-Q.; Wang, J.-Y.; Yu, S.-Y.; Wu, G.-G.; Wei, Q.; Deng, Y.-B.; Wu, X.-L.; Cui, X.-W.; Dietrich, C.F. Artificial intelligence in medical imaging of the liver. World J. Gastroenterol. 2019, 25, 672–682. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Ma, Y.; Zhang, J.; Hu, J.; Zhang, M.; Wang, Y.; Li, Y.; Wu, L.; Pan, Y.; Zhang, Y.; et al. Predictive model for inflammation grades of chronic hepatitis B: Large-scale analysis of clinical parameters and gene expressions. Liver Int. 2017, 37, 1632–1641. [Google Scholar] [CrossRef]
- Mcheick, H.; Saleh, L.; Ajami, H.; Mili, H. Context Relevant Prediction Model for COPD Domain Using Bayesian Belief Network. Sensors 2017, 17, 1486. [Google Scholar] [CrossRef] [Green Version]
- Shah, S.A.; Velardo, C.; Farmer, A.J.; Tarassenko, L.; Kim, B.; Barber, V. Exacerbations in Chronic Obstructive Pulmonary Disease: Identification and Prediction Using a Digital Health System. J. Med. Int. Res. 2017, 19, e69. [Google Scholar] [CrossRef]
- Granero, M.A.F.; Sanchez-Morillo, D.; Leon-Jimenez, A. Computerised Analysis of Telemonitored Respiratory Sounds for Predicting Acute Exacerbations of COPD. Sensors 2015, 15, 26978–26996. [Google Scholar] [CrossRef] [Green Version]
- Olivera, A.R.; Roesler, V.; Iochpe, C.; Schmidt, M.I.; Vigo, Á.; Barreto, S.M.; Duncan, B.B. Comparação de algoritmos de aprendizagem de máquina para construir um modelo preditivo para detecção de diabetes não diagnosticada—ELSA-Brasil: Estudo de acurácia. Sao Paulo Med. J. 2017, 135, 234–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.; Li, N.; Lv, L.; Fu, Y.; Cheng, C.; Wang, C.; Ye, Y.; Li, S.; Lou, T. Improving precision of glomerular filtration rate estimating model by ensemble learning. J. Transl. Med. 2017, 15, 231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finkelstein, J.; Jeong, I.C. Machine learning approaches to personalize early prediction of asthma exacerbations. Ann. N. Y. Acad. Sci. 2016, 1387, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Tirzīte, M.; Bukovskis, M.; Strazda, G.; Jurka, N.; Taivans, I. Detection of lung cancer in exhaled breath with an electronic nose using support vector machine analysis. J. Breath Res. 2017, 11, 036009. [Google Scholar] [CrossRef]
- Topalovic, M.; Laval, S.; Aerts, J.M.; Troosters, T.; Decramer, M.; Janssens, W. Belgian Pulmonary Function Study Investigators. Automated Interpretation of Pulmonary Function Tests in Adults with Respiratory Complaints. Respiration 2017, 93, 170–178. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Amenta, F. Machine learning in medicine: Performance calculation of dementia prediction by support vector machines (SVM). Inform. Med. Unlocked 2019, 16, 100200. [Google Scholar] [CrossRef]
- Griffis, J.C.; Allendorfer, J.B.; Szaflarski, J.P. Voxel-based Gaussian naïve Bayes classification of ischemic stroke lesions in individual T1-weighted MRI scans. J. Neurosci. Methods 2015, 257, 97–108. [Google Scholar] [CrossRef] [Green Version]
- Dinga, R.; Marquand, A.F.; Veltman, D.J.; Beekman, A.T.F.; Schoevers, R.A.; Van Hemert, A.M.; Penninx, B.W.J.H.; Schmaal, L. Predicting the naturalistic course of depression from a wide range of clinical, psychological, and biological data: A machine learning approach. Transl. Psychiatry 2018, 8, 241. [Google Scholar] [CrossRef] [Green Version]
- Pekkala, T.; Hall, A.; Lötjönen, J.; Mattila, J.; Soininen, H.; Ngandu, T.; Laatikainen, T.; Kivipelto, M.; Solomon, A. Development of a Late-Life Dementia Prediction Index with Supervised Machine Learning in the Population-Based CAIDE Study. J. Alzheimers Dis. 2016, 55, 1055–1067. [Google Scholar] [CrossRef] [Green Version]
- Kuo, S.H.; Lin, C.Y.; Wang, J.; Sims, P.A.; Pan, M.K.; Liou, J.Y.; Faust, P.L. Climbing fiber-Purkinje cell synaptic pathology in tremor and cerebellar degenerative diseases. Acta Neuropathol. 2017, 133, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Oakden-Rayner, L.; Carneiro, G.; Bessen, T.; Nascimento, J.C.; Bradley, A.; Palmer, L.J. Precision Radiology: Predicting longevity using feature engineering and deep learning methods in a radiomics framework. Sci. Rep. 2017, 7, 1648. [Google Scholar] [CrossRef] [PubMed]
- Farmakis, D.; Koeck, T.; Mullen, W.; Parissis, J.; Gogas, B.D.; Nikolaou, M.; Filippatos, G. Urine proteome analysis in heart failure with reduced ejection fraction complicated by chronic kidney disease: Feasibility, and clinical and pathogenetic correlates. Eur. J. Heart Fail. 2016, 18, 822–829. [Google Scholar] [CrossRef] [Green Version]
- Feres, M.; Louzoun, Y.; Haber, S.; Faveri, M.; Figueiredo, L.C.; Levin, L. Support vector machine-based differentiation between aggressive and chronic periodontitis using microbial profiles. Int. Dent. J. 2017, 68, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Davis, F.; Gostine, M.; Roberts, B.; Risko, R.; Cappelleri, J.C.; Sadosky, A. Characterizing classes of fibromyalgia within the continuum of central sensitization syndrome. J. Pain Res. 2018, 11, 2551–2560. [Google Scholar] [CrossRef] [Green Version]
- Singh, S.M.; Hanchate, D.B. Improving disease prediction by machine learning. Int. J. Res. Eng. Technol. 2018, 5, 1542–1548. [Google Scholar]
- Van Der Heijden, M.; Velikova, M.; Lucas, P.J. Learning Bayesian networks for clinical time series analysis. J. Biomed. Inform. 2014, 48, 94–105. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, S.; Qirko, K.; Smith, T.; Corcoran, E.; Wysham, N.G.; Bazaz, G.; Kappel, G.; Gerber, A.N. A machine learning approach to triaging patients with chronic obstructive pulmonary disease. PLoS ONE 2017, 12, e0188532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gawlitza, J.; Sturm, T.; Spohrer, K.; Henzler, T.; Akin, I.; Schoenberg, S.; Borggrefe, M.; Haubenreisser, H.; Trinkmann, F. Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD. Diagnostics 2019, 9, 33. [Google Scholar] [CrossRef] [Green Version]
- Bzdok, D.; Meyer-Lindenberg, A. Machine Learning for Precision Psychiatry: Opportunities and Challenges. Boil. Psychiatry Cogn. Neurosci. Neuroimaging 2018, 3, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Kavakiotis, I.; Tsave, O.; Salifoglou, A.; Maglaveras, N.; Vlahavas, I.; Chouvarda, I. Machine Learning and Data Mining Methods in Diabetes Research. Comput. Struct. Biotechnol. J. 2017, 15, 104–116. [Google Scholar] [CrossRef]
- Gopi, B.; Getu, G.S.; Chintalapudi, N.; Francesco, A.; Seyed, K.T. Comparative Machine-Learning Approach: A Follow-Up Study on Type 2 Diabetes Predictions by Cross-Validation Methods. Machines 2019, 7, 74. [Google Scholar]
- Hueso, M.; Vellido, A.; Montero, N.; Barbieri, C.; Ramos, R.; Angoso, M.; Cruzado, J.M.; Jönsson, A. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy. Kidney Dis. 2018, 4, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Berg, A.; Maire, M.; Malik, J. SVM-KNN: Discriminative Nearest Neighbor Classification for Visual Category Recognition. In Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition—Volume 2 (CVPR 06), New York, NY, USA, 17–22 June 2006; Institute of Electrical and Electronics Engineers (IEEE): Piscataway Township, NJ, USA. [Google Scholar]
- Tripoliti, E.E.; Papadopoulos, T.G.; Karanasiou, G.S.; Naka, K.K.; Fotiadis, D.I. Heart Failure: Diagnosis, Severity Estimation and Prediction of Adverse Events Through Machine Learning Techniques. Comput. Struct. Biotechnol. J. 2016, 15, 26–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-H.; Kim, D.-H.; Jeong, S.-N.; Choi, S.-H. Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm. J. Periodontal Implant. Sci. 2018, 48, 114–123. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yieh, L.; Yang, T.; Drinkenburg, W.H.; Peeters, P.; Steckler, T.; Narayan, V.A.; Wittenberg, G.M.; Ye, J. Metabolomic biosignature differentiates melancholic depressive patients from healthy controls. BMC Genom. 2016, 17, 669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinberger, K.Q.; Saul, L.K. Distance metric learning for large margin nearest neighbor classification. J. Mach. Learn. Res. 2009, 10, 207–244. [Google Scholar]
- Buscema, P.M.; Massini, G.; Breda, M.; Lodwick, W.A.; Newman, F.; Asadi-Zeydabadi, M. Artificial Neural Networks. In Studies in Systems, Decision and Control; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Chen, M.; Hao, Y.; Hwang, K.; Wang, L.; Wang, L. Disease Prediction by Machine Learning Over Big Data From Healthcare Communities. IEEE Access 2017, 5, 8869–8879. [Google Scholar] [CrossRef]
- Das, N.; Topalovic, M.; Janssens, W. Artificial intelligence in diagnosis of obstructive lung disease. Curr. Opin. Pulm. Med. 2018, 24, 117–123. [Google Scholar] [CrossRef]
- Aliper, A.M.; Jellen, L.; Cortese, F.; Artemov, A.; Karpinsky-Semper, D.; Moskalev, A.; Swick, A.G.; Zhavoronkov, A. Towards natural mimetics of metformin and rapamycin. Aging 2017, 9, 2245–2268. [Google Scholar] [CrossRef] [Green Version]
- Kuru, K.; Niranjan, M.; Tunca, Y.; Osvank, E.; Azim, T. Biomedical visual data analysis to build an intelligent diagnostic decision support system in medical genetics. Artif. Intell. Med. 2014, 62, 105–118. [Google Scholar] [CrossRef]
CD Diagnosis | Study Type | Input Features | Outcomes | Models | Reference |
---|---|---|---|---|---|
Hepatic fibrosis | Cross-sectional | Age, sex and RTE images | Accuracy, Sensitivity, and Specificity | NB, RF, KNN, SVM, and NN | [16,17,18] |
Chronic hepatitis B stages | Case study | Gene expressions | Precision and AU-ROC | RF, KNN, SVM | [19] |
COPD exacerbation events | Retrospective | COPD symptoms | TP, FP, ROC | BN | [20] |
Aggravating event identification of COPD | Longitudinal | EDGE digital health system | AU-ROC | LR | [21] |
Exacerbations of COPD patients | Case-control | Equi-ripple bandpass (BP) | Sensitivity, specificity, accuracy, PPV, NPV | PCA coupled SVM | [22] |
Diabetes classification | Case study | Age and clinical data | Sensitivity, specificity, accuracy, AU-ROC | LR, ANN, NB, KNN, and RF | [23] |
Glomerulus filtration rate estimation | Retrospective cohort study (RCT) | Age, sex, and serum creatinine 99mTc-DTPA imaging | Accuracy | ANN, SVM | [24] |
Asthma exacerbations events | Case-control | Telemonitoring data | Sensitivity, specificity, accuracy | NB, adaptive Bayesian network, and SVM | [25] |
Stage of lung cancer | Prospective cohort study | Cyrano’s 320 sensor device, age | Accuracy, sensitivity, and specificity | SVM | [26] |
Pulmonary function tests | RCT | Blood analysis, lung images | Accuracy | DT | [27] |
Dementia prediction | Case-control | MRI | Accuracy, precision, and specificity | SVM | [28] |
Identification of ischemic stroke lesions | Cross-sectional | MRI | Accuracy | NB | [29] |
Course of depression | Case study | A shortened version of the IDS (QIDS) | Accuracy | LR | [30] |
Late-life dementia assessment | Prospective cohort | MRI/CT, Blood Tests | ROC, AUC and, MCA | SVM | [31] |
Degenerative movement disorders | Cross-sectional | Pathological | Not defined | Hierarchical clustering analyses | [32] |
Checking CT imaging effectiveness | Case study | CT images, Age, and sex | Accuracy, AU-ROC | NN | [33] |
Discriminatory peptide identification of heart failures | Experimental | Age, sex, and renal function | Sensitivity, specificity | SVM | [34] |
Classification of chronic periodontitis patients | Case-control | Age and PH subjects | Accuracy, Sensitivity, Specificity | SVM | [35] |
Classification of fibromyalgia | Case Study | ICD-9 codes | Mean | K-means clustering | [36] |
Chronic diseases assessment | Prospective Cohort | Community question answers | Accuracy | NB, SVM, and RNN | [37] |
Pathology Type | Name | Models | Accuracy (%) | Strengths | Limitations | Future Developments |
---|---|---|---|---|---|---|
Liver | Hepatic fibrosis stage[16], and chronic hepatitis-B [19] | NB, RF, KNN, SVM, and NN | 78.1–82.7 | Liver related diseases produce large patient information, metabolomics analyses, and EHR. Deep learning algorithms help in the prediction of liver therapeutic discovery. | There is currently no complete AI system that can able to detect a couple of abnormalities overall through the human body [38]. | Further studies are needed to develop an advanced deep learning algorithm to remedy greater complicated medical imaging troubles, along with ultrasound or Positron-emission tomography (PET) [18]. |
Pulmonary | COPD exacerbation, asthma exacerbation[25], lung cancer stages [26] | Bayesian Network, LR, SVM, NB, and PCA | 62.3–76.1 | Studies proposed a data-driven methodology that can help to produce COPD predictive models and asthma exacerbations. It would be useful to support both patients and physicians [39]. | Even it is less cost of devices like spirometers to check lung functionality but it is not likely to replaced by quantified computed tomography. | It is highly recommended in future studies to incorporate ML models in the predictive analysis [40]. |
Nervous system | Dementia, Ischemic stroke lesions identification [29], late-life dementia [31], degenerative moment disorders [32] | SVM, LR, NB, RF, Hierarchical clustering analyses, and DSI | 69–80 | ML studies in Nervous systems can help to improve the diagnosis of Nerve system conditions | AI-based behavioral systems are still in early to understand the discrete behavior of patient chronic conditions | Future AI might be able to represent these features into one cognitive reinforcement-mastering model [41]. |
Diabetes | Type 2 Diabetes Mellitus [23] | LR, ANN, NB, KNN, and RF | 73.2–91.6 | These techniques in diabetic studies can be helpful in symptoms recognition, and disease forecasting | Technological advancements in AI need to more effective with large data sets in diabetes prediction [42] | ML applications need to produce facts on big data mining of medical data sets [42,43]. |
Kidney Diseases | Glomerular filtration rate estimation [24] | ANN, SVM, Regression and ensemble learning | 73.1–76.0 | Risk prediction can highly effective in kidney diseases | The research gap in the artificial kidney implantation needs to be addressed [44]. | Many demanding situations need to be a success before it becomes a fact and a part of medical practice in nephrology. |
Disease-related to muscle pains | Fibromyalgia (FM) [36] | KNN | - | In FM class division, K-means clusters can helpful for categorization of pain, clinical procedure usage, and symptom severity | KNN is a self-learner in trained data classification [45]. | Future studies are needed to propose feasible algorithms to forecast FM causes. |
Heart diseases | peptides for heart failure [34] | NB, and SVM | 84–91 | Optimized data-driven ML techniques are helped to predict heart diseases that improve total research and preventive care. Also, it will make sure that many people can happily lead a healthy lifestyle | To predict the risk quality of the heart dataset is needed in clinical practice to support high-quality datasets of heart patients. | Scientists’ are needed to propose precise models to predict the risk of heart failures [46] |
Infections | Periodontitis [35] | SVM, NN | Not defined | NN and SVM algorithms are useful in the diagnosis and prediction of periodontal diseases | Lack of optimal datasets and model improvements | A computer-aided classification system can be expected to become an efficient and effective procedure for these inflectional diseases [47] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battineni, G.; Sagaro, G.G.; Chinatalapudi, N.; Amenta, F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. J. Pers. Med. 2020, 10, 21. https://doi.org/10.3390/jpm10020021
Battineni G, Sagaro GG, Chinatalapudi N, Amenta F. Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. Journal of Personalized Medicine. 2020; 10(2):21. https://doi.org/10.3390/jpm10020021
Chicago/Turabian StyleBattineni, Gopi, Getu Gamo Sagaro, Nalini Chinatalapudi, and Francesco Amenta. 2020. "Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis" Journal of Personalized Medicine 10, no. 2: 21. https://doi.org/10.3390/jpm10020021
APA StyleBattineni, G., Sagaro, G. G., Chinatalapudi, N., & Amenta, F. (2020). Applications of Machine Learning Predictive Models in the Chronic Disease Diagnosis. Journal of Personalized Medicine, 10(2), 21. https://doi.org/10.3390/jpm10020021