The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration
Abstract
:1. Introduction
2. Epidemiology and Causes of Bone Fractures
3. Bone Regeneration
4. Composition of Native Bone and Properties of Ideal Substitutes
5. Current Solutions
6. Growth Factors and Bioactive Molecules in Bone Repair
6.1. Bone Morphogenic Proteins–BMPs
6.2. Bioactive Peptides
6.3. Platelet-Derived Growth Factor
7. Demineralized Bone Matrix
8. Calcium-Based Bone Graft Substitutes
9. Cell-Containing Scaffolds
10. Implant Microfabrication Technologies
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mi, B.; Xiong, Y.; Chen, L.; Yan, C.; Endo, Y.; Liu, Y.; Liu, J.; Hu, L.; Hu, Y.; Sun, Y.; et al. CircRNA AFF4 Promotes Osteoblast Cells Proliferation and Inhibits Apoptosis via the Mir-7223-5p/PIK3R1 Axis. Aging 2019, 11, 11988–12001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Shen, S.; Hu, T.; Williams, G.R.; Bian, Y.; Feng, B.; Liang, R.; Weng, X. Layered Double Hydroxide Modified Bone Cement Promoting Osseointegration via Multiple Osteogenic Signal Pathways. ACS Nano 2021, 15, 9732–9745. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ying, J.; Nie, X.; Zhou, T.; Xiao, D.; Swarnkar, G.; Abu-Amer, Y.; Guan, J.; Shen, J. Targeting Angiogenesis for Fracture Nonunion Treatment in Inflammatory Disease. Bone Res. 2021, 9, 29. [Google Scholar] [CrossRef] [PubMed]
- Henkel, J.; Woodruff, M.A.; Epari, D.R.; Steck, R.; Glatt, V.; Dickinson, I.C.; Choong, P.F.M.; Schuetz, M.A.; Hutmacher, D.W. Bone Regeneration Based on Tissue Engineering Conceptions—A 21st Century Perspective. Bone Res. 2013, 1, 216–248. [Google Scholar] [CrossRef] [PubMed]
- Yi, J.; Li, M.; Zhu, J.; Wang, Z.; Li, X. Recent Development and Applications of Electrodeposition Biocoatings on Medical Titanium for Bone Repair. J. Mater. Chem. B 2024, 12, 9863–9893. [Google Scholar] [CrossRef] [PubMed]
- Zein, R.; Selting, W.; Benedicenti, S. Effect of Low-Level Laser Therapy on Bone Regeneration During Osseointegration and Bone Graft. Photomed. Laser Surg. 2017, 35, 649–658. [Google Scholar] [CrossRef]
- Do Bomfim, F.R.C.; Sella, V.R.G.; Thomasini, R.L.; Plapler, H. Photobiomodulation Modulates Proliferation and Gene Expression Related to Calcium Signaling in Human Osteoblast Cells: Photobiomodulation Effects in Human Osteoblasts. J. Lasers Med. Sci. 2024, 15, e45. [Google Scholar] [CrossRef]
- Huertas, R.M.; Luna-Bertos, E.D.; Ramos-Torrecillas, J.; Leyva, F.M.; Ruiz, C.; García-Martínez, O. Effect and Clinical Implications of the Low-Energy Diode Laser on Bone Cell Proliferation. Biol. Res. For. Nurs. 2014, 16, 191–196. [Google Scholar] [CrossRef]
- Furtado, G.S.; Martin, V.; Araújo, R.; Gomes, P.S.; Lago, A.D.N. Osteoinductive Activity of Photobiomodulation in an Organotypic Bone Model. Photodiagnosis Photodyn. Ther. 2024, 45, 103936. [Google Scholar] [CrossRef]
- Lu, P.; Peng, J.; Liu, J.; Chen, L. The Role of Photobiomodulation in Accelerating Bone Repair. Progress. Biophys. Mol. Biol. 2024, 188, 55–67. [Google Scholar] [CrossRef]
- Ortman, J.M.; Velkoff, V.A.; Hogan, H. An Aging Nation: The Older Population in the United States. Available online: https://hero.epa.gov/hero/index.cfm/reference/details/reference_id/2990744 (accessed on 26 September 2024).
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Ageing 2017—Highlights; ST/ESA/SER.A/397; United Nations: New York, NY, USA, 2017; ISBN 978-92-1-151551-0.
- Farr, J.N.; Melton, L.J.; Achenbach, S.J.; Atkinson, E.J.; Khosla, S.; Amin, S. Fracture Incidence and Characteristics in Young Adults Aged 18 to 49 Years: A Population-Based Study. J. Bone Miner. Res. 2017, 32, 2347–2354. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Road Traffic Injuries. Available online: https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries (accessed on 26 September 2024).
- Kanis, J.A.; Johansson, H.; Oden, A.; McCloskey, E.V. Assessment of Fracture Risk. Eur. J. Radiol. 2009, 71, 392–397. [Google Scholar] [CrossRef] [PubMed]
- Gennari, L.; Klein, R.; Ferrari, S. Chapter 12—The Genetics of Peak Bone Mass. In Osteoporosis in Men, 2nd ed.; Orwoll, E.S., Bilezikian, J.P., Vanderschueren, D., Eds.; Academic Press: San Diego, CA, USA, 2010; pp. 149–163. ISBN 978-0-12-374602-3. [Google Scholar]
- Snega Priya, P.; Pratiksha Nandhini, P.; Arockiaraj, J. A Comprehensive Review on Environmental Pollutants and Osteoporosis: Insights into Molecular Pathways. Environ. Res. 2023, 237, 117103. [Google Scholar] [CrossRef] [PubMed]
- Dasarathy, J.; Labrador, H. Bone Health in Women. Prim. Care 2018, 45, 643–657. [Google Scholar] [CrossRef]
- Nieves, J.W. CHAPTER 34—Nonskeletal Risk Factors for Osteoporosis and Fractures. In Osteoporosis, 3rd ed.; Marcus, R., Feldman, D., Nelson, D.A., Rosen, C.J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 887–909. ISBN 978-0-12-370544-0. [Google Scholar]
- Einhorn, T.A.; Gerstenfeld, L.C. Fracture Healing: Mechanisms and Interventions. Nat. Rev. Rheumatol. 2015, 11, 45–54. [Google Scholar] [CrossRef]
- Gerstenfeld, L.C.; Cullinane, D.M.; Barnes, G.L.; Graves, D.T.; Einhorn, T.A. Fracture Healing as a Post-Natal Developmental Process: Molecular, Spatial, and Temporal Aspects of Its Regulation. J. Cell Biochem. 2003, 88, 873–884. [Google Scholar] [CrossRef]
- Cheal, E.J.; Hayes, W.C.; White, A.A.; Perren, S.M. Stress Analysis of Compression Plate Fixation and Its Effects on Long Bone Remodeling. J. Biomech. 1985, 18, 141–150. [Google Scholar] [CrossRef]
- Claes, L.; Recknagel, S.; Ignatius, A. Fracture Healing under Healthy and Inflammatory Conditions. Nat. Rev. Rheumatol. 2012, 8, 133–143. [Google Scholar] [CrossRef]
- Pandian, M.R.; Jain, A.R.; Jayeshc, R.; Narasimman, M.; Pradeep, R. Bone Substitues in Prosthodontic Service. Biomed. Pharmacol. J. 2015, 8, 245–247. [Google Scholar] [CrossRef]
- Dang, Y.; Zhang, Y.; Luo, G.; Li, D.; Ma, Y.; Xiao, Y.; Xiao, L.; Wang, X. The Decisive Early Phase of Biomaterial-Induced Bone Regeneration. Appl. Mater. Today 2024, 38, 102236. [Google Scholar] [CrossRef]
- Aryal, R.; Chen, X.-P.; Fang, C.; Hu, Y.-C. Bone Morphogenetic Protein-2 and Vascular Endothelial Growth Factor in Bone Tissue Regeneration: New Insight and Perspectives. Orthop. Surg. 2014, 6, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Diomede, F.; Marconi, G.D.; Fonticoli, L.; Pizzicanella, J.; Merciaro, I.; Bramanti, P.; Mazzon, E.; Trubiani, O. Functional Relationship between Osteogenesis and Angiogenesis in Tissue Regeneration. Int. J. Mol. Sci. 2020, 21, 3242. [Google Scholar] [CrossRef] [PubMed]
- Xian, C.; Wang, Y.; Zhang, B.; Tang, L.; Pan, J.; Luo, Y.; Jiang, P.; Li, D. Alternative Splicing and Expression of the Insulin-like Growth Factor (IGF-1) Gene in Osteoblasts under Mechanical Stretch. Chin. Sci. Bull. 2006, 51, 2731–2736. [Google Scholar] [CrossRef]
- Kon, T.; Cho, T.; Aizawa, T.; Yamazaki, M.; Nooh, N.; Graves, D.; Gerstenfeld, L.C.; Einhorn, T.A. Expression of Osteoprotegerin, Receptor Activator of NF-κB Ligand (Osteoprotegerin Ligand) and Related Proinflammatory Cytokines During Fracture Healing. J. Bone Miner. Res. 2001, 16, 1004–1014. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, G.; Dunstan, C.R.; Zreiqat, H. Short-Term Exposure to Tumor Necrosis Factor-Alpha Enables Human Osteoblasts to Direct Adipose Tissue-Derived Mesenchymal Stem Cells into Osteogenic Differentiation. Stem Cells Dev. 2012, 21, 2420–2429. [Google Scholar] [CrossRef]
- Ying, H.; Li, Q.; Zhao, C. Interleukin 1β and Tumor Necrosis Factor α Promote Hfob1.19 Cell Viability via Activating AP1. Am. J. Transl. Res. 2016, 8, 2411–2418. [Google Scholar]
- Day, T.F.; Yang, Y. Wnt and Hedgehog Signaling Pathways in Bone Development. J. Bone Jt. Surg. 2008, 90, 19–24. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Uehara, S.; Udagawa, N.; Takahashi, N. Regulation of Bone Metabolism by Wnt Signals. J. Biochem. 2016, 159, 387–392. [Google Scholar] [CrossRef]
- Hu, L.; Chen, W.; Qian, A.; Li, Y.-P. Wnt/β-Catenin Signaling Components and Mechanisms in Bone Formation, Homeostasis, and Disease. Bone Res. 2024, 12, 39. [Google Scholar] [CrossRef]
- Wang, W.; Zhong, W.; Yuan, J.; Yan, C.; Hu, S.; Tong, Y.; Mao, Y.; Hu, T.; Zhang, B.; Song, G. Involvement of Wnt/β-Catenin Signaling in the Mesenchymal Stem Cells Promote Metastatic Growth and Chemoresistance of Cholangiocarcinoma. Oncotarget 2015, 6, 42276. [Google Scholar] [CrossRef]
- Edwards, J.R.; Mundy, G.R. Advances in Osteoclast Biology: Old Findings and New Insights from Mouse Models. Nat. Rev. Rheumatol. 2011, 7, 235–243. [Google Scholar] [CrossRef] [PubMed]
- Simonet, W.S.; Lacey, D.L.; Dunstan, C.R.; Kelley, M.; Chang, M.-S.; Lüthy, R.; Nguyen, H.Q.; Wooden, S.; Bennett, L.; Boone, T.; et al. Osteoprotegerin: A Novel Secreted Protein Involved in the Regulation of Bone Density. Cell 1997, 89, 309–319. [Google Scholar] [CrossRef] [PubMed]
- Boyle, W.J.; Simonet, W.S.; Lacey, D.L. Osteoclast Differentiation and Activation. Nature 2003, 423, 337–342. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Oliva, D.; Barrena-Blázquez, S.; Jiménez-Álvarez, L.; Fraile-Martinez, O.; García-Montero, C.; López-González, L.; Torres-Carranza, D.; García-Puente, L.M.; Carranza, S.T.; Álvarez-Mon, M.Á.; et al. The RANK–RANKL–OPG System: A Multifaceted Regulator of Homeostasis, Immunity, and Cancer. Medicina 2023, 59, 1752. [Google Scholar] [CrossRef]
- Garg, P.; Mazur, M.M.; Buck, A.C.; Wandtke, M.E.; Liu, J.; Ebraheim, N.A. Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts. Orthop. Surg. 2017, 9, 13–19. [Google Scholar] [CrossRef]
- Walsh, W.R.; Vizesi, F.; Michael, D.; Auld, J.; Langdown, A.; Oliver, R.; Yu, Y.; Irie, H.; Bruce, W. Beta-TCP Bone Graft Substitutes in a Bilateral Rabbit Tibial Defect Model. Biomaterials 2008, 29, 266–271. [Google Scholar] [CrossRef]
- Heinemann, S.; Gelinsky, M.; Worch, H.; Hanke, T. Resorbable bone substitution materials: An overview of commercially available materials and new approaches in the field of composites. Orthopade 2011, 40, 761–773. [Google Scholar] [CrossRef]
- Um, I.W. Demineralized Dentin Matrix (DDM) As a Carrier for Recombinant Human Bone Morphogenetic Proteins (rhBMP-2). Adv. Exp. Med. Biol. 2018, 1077, 487–499. [Google Scholar] [CrossRef]
- Georgeanu, V.A.; Gingu, O.; Antoniac, I.V.; Manolea, H.O. Current Options and Future Perspectives on Bone Graft and Biomaterials Substitutes for Bone Repair, from Clinical Needs to Advanced Biomaterials Research. Appl. Sci. 2023, 13, 8471. [Google Scholar] [CrossRef]
- Vo, T.N.; Kasper, F.K.; Mikos, A.G. Strategies for Controlled Delivery of Growth Factors and Cells for Bone Regeneration. Adv. Drug Deliv. Rev. 2012, 64, 1292–1309. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef] [PubMed]
- Fassina, L.; Saino, E.; Visai, L.; Silvani, G.; Cusella De Angelis, M.G.; Mazzini, G.; Benazzo, F.; Magenes, G. Electromagnetic Enhancement of a Culture of Human SAOS-2 Osteoblasts Seeded onto Titanium Fiber-Mesh Scaffolds. J. Biomed. Mater. Res. A 2008, 87, 750–759. [Google Scholar] [CrossRef] [PubMed]
- Bloise, N.; Petecchia, L.; Ceccarelli, G.; Fassina, L.; Usai, C.; Bertoglio, F.; Balli, M.; Vassalli, M.; Cusella De Angelis, M.G.; Gavazzo, P.; et al. The Effect of Pulsed Electromagnetic Field Exposure on Osteoinduction of Human Mesenchymal Stem Cells Cultured on Nano-TiO2 Surfaces. PLoS ONE 2018, 13, e0199046. [Google Scholar] [CrossRef] [PubMed]
- Tong, L.; Liao, Q.; Zhao, Y.; Huang, H.; Gao, A.; Zhang, W.; Gao, X.; Wei, W.; Guan, M.; Chu, P.K.; et al. Near-Infrared Light Control of Bone Regeneration with Biodegradable Photothermal Osteoimplant. Biomaterials 2019, 193, 1–11. [Google Scholar] [CrossRef]
- Ma, L.; Feng, X.; Liang, H.; Wang, K.; Song, Y.; Tan, L.; Wang, B.; Luo, R.; Liao, Z.; Li, G.; et al. A Novel Photothermally Controlled Multifunctional Scaffold for Clinical Treatment of Osteosarcoma and Tissue Regeneration. Mater. Today 2020, 36, 48–62. [Google Scholar] [CrossRef]
- Reddy, S.; Amarnath, M.; Sinha, A.; Singh, S. NanoBiphasic Ceramics for Tissue Engineering: A Review. J. Bionanosci. 2011, 5, 26–32. [Google Scholar] [CrossRef]
- Van de Graaf, G.; Zoppa, A.; Moreira, R.; Maestrelli, S.; Marques, R.; Campos, M. Morphological and Mechanical Characterization of Chitosan-Calcium Phosphate Composites for Potential Application as Bone-Graft Substitutes. Res. Biomed. Eng. 2015, 31, 334–342. [Google Scholar] [CrossRef]
- De Lacerda Schickert, S.; van den Beucken, J.J.J.P.; Leeuwenburgh, S.C.G.; Jansen, J.A. Pre-Clinical Evaluation of Biological Bone Substitute Materials for Application in Highly Loaded Skeletal Sites. Biomolecules 2020, 10, 883. [Google Scholar] [CrossRef]
- Sohn, H.-S.; Oh, J.-K. Review of Bone Graft and Bone Substitutes with an Emphasis on Fracture Surgeries. Biomater. Res. 2019, 23, 9. [Google Scholar] [CrossRef]
- Lee, D.R.; Poser, J.W. Biomechanics of Bone Grafts and Bone Substitutes. In Orthopaedic Biomechanics in Sports Medicine; Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 37–56. ISBN 978-3-030-81549-3. [Google Scholar]
- Giannoudis, P.V.; Arts, J.J.C.; Schmidmaier, G.; Larsson, S. What Should Be the Characteristics of the Ideal Bone Graft Substitute? Injury 2011, 42, S1–S2. [Google Scholar] [CrossRef]
- Fernandez de Grado, G.; Keller, L.; Idoux-Gillet, Y.; Wagner, Q.; Musset, A.-M.; Benkirane-Jessel, N.; Bornert, F.; Offner, D. Bone Substitutes: A Review of Their Characteristics, Clinical Use, and Perspectives for Large Bone Defects Management. J. Tissue Eng. 2018, 9, 2041731418776819. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.R.; Laurencin, C.T.; Nukavarapu, S.P. Bone Tissue Engineering: Recent Advances and Challenges. Crit. Rev. Biomed. Eng. 2012, 40, 363–408. [Google Scholar] [CrossRef] [PubMed]
- Ahlmann, E.; Patzakis, M.; Roidis, N.; Shepherd, L.; Holtom, P. Comparison of Anterior and Posterior Iliac Crest Bone Grafts in Terms of Harvest-Site Morbidity and Functional Outcomes. J. Bone Jt. Surg. Am. 2002, 84, 716–720. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.T.; Warnke, P.H.; Behrens, E.; Wiltfang, J. Morbidity after Iliac Crest Bone Graft Harvesting over an Anterior versus Posterior Approach. J. Oral Maxillofac. Surg. 2011, 69, 48–53. [Google Scholar] [CrossRef]
- Myeroff, C.; Archdeacon, M. Autogenous Bone Graft: Donor Sites and Techniques. J. Bone Jt. Surg. Am. 2011, 93, 2227–2236. [Google Scholar] [CrossRef]
- Boehm, K.S.; Al-Taha, M.; Morzycki, A.; Samargandi, O.A.; Al-Youha, S.; LeBlanc, M.R. Donor Site Morbidities of Iliac Crest Bone Graft in Craniofacial Surgery: A Systematic Review. Ann. Plast. Surg. 2019, 83, 352–358. [Google Scholar] [CrossRef]
- Ebraheim, N.A.; Elgafy, H.; Xu, R. Bone-Graft Harvesting from Iliac and Fibular Donor Sites: Techniques and Complications. J. Am. Acad. Orthop. Surg. 2001, 9, 210–218. [Google Scholar] [CrossRef]
- St John, T.A.; Vaccaro, A.R.; Sah, A.P.; Schaefer, M.; Berta, S.C.; Albert, T.; Hilibrand, A. Physical and Monetary Costs Associated with Autogenous Bone Graft Harvesting. Am. J. Orthop. 2003, 32, 18–23. [Google Scholar]
- Jo, S.H.; Kim, Y.-K.; Choi, Y.-H. Histological Evaluation of the Healing Process of Various Bone Graft Materials after Engraftment into the Human Body. Materials 2018, 11, 714. [Google Scholar] [CrossRef]
- Devescovi, V.; Leonardi, E.; Ciapetti, G.; Cenni, E. Growth Factors in Bone Repair. Chir. Organi Mov. 2008, 92, 161–168. [Google Scholar] [CrossRef]
- Chen, D.; Zhao, M.; Mundy, G.R. Bone Morphogenetic Proteins. Growth Factors 2004, 22, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Hari Reddi, A. Regulation of Cartilage and Bone Differentiation by Bone Morphogenetic Proteins. Curr. Opin. Cell Biol. 1992, 4, 850–855. [Google Scholar] [CrossRef]
- Macias, D.; Gañan, Y.; Sampath, T.K.; Piedra, M.E.; Ros, M.A.; Hurle, J.M. Role of BMP-2 and OP-1 (BMP-7) in Programmed Cell Death and Skeletogenesis during Chick Limb Development. Development 1997, 124, 1109–1117. [Google Scholar] [CrossRef] [PubMed]
- Van Wijk, B.; Moorman, A.F.M.; van den Hoff, M.J.B. Role of Bone Morphogenetic Proteins in Cardiac Differentiation. Cardiovasc. Res. 2007, 74, 244–255. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.; Li, Q.; Lin, X.; Hu, N.; Liao, J.-Y.; Lin, L.-B.; Zhao, C.; Hu, Z.-M.; Liang, X.; Xu, W.; et al. BMP2 Induces Chondrogenic Differentiation, Osteogenic Differentiation and Endochondral Ossification in Stem Cells. Cell Tissue Res. 2016, 366, 101–111. [Google Scholar] [CrossRef]
- Ishidou, Y.; Kitajima, I.; Obama, H.; Maruyama, I.; Murata, F.; Imamura, T.; Yamada, N.; ten Dijke, P.; Miyazono, K.; Sakou, T. Enhanced Expression of Type I Receptors for Bone Morphogenetic Proteins during Bone Formation. J. Bone Miner. Res. 1995, 10, 1651–1659. [Google Scholar] [CrossRef]
- Poon, B.; Kha, T.; Tran, S.; Dass, C.R. Bone Morphogenetic Protein-2 and Bone Therapy: Successes and Pitfalls. J. Pharm. Pharmacol. 2016, 68, 139–147. [Google Scholar] [CrossRef]
- Reed, M.S.; Johnson, J.M.; Ginat, D.T. Recombinant Human Bone Morphogenetic Protein. In Neuroimaging Pharmacopoeia; Ginat, D.T., Small, J.E., Schaefer, P.W., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 359–361. ISBN 978-3-319-12715-6. [Google Scholar]
- Lim, H.-K.; Kwon, I.-J.; On, S.-W.; Hong, S.-J.; Yang, B.-E.; Kim, S.-M.; Lee, J.-H.; Byun, S.-H. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2. Int. J. Mol. Sci. 2021, 22, 11485. [Google Scholar] [CrossRef]
- Raina, D.B.; Glencross, A.; Chaher, N.; Liu, Y.; Lidgren, L.; Isaksson, H.; Tägil, M. Synthesis and Characterization of a Biocomposite Bone Bandage for Controlled Delivery of Bone-Active Drugs in Fracture Nonunions. ACS Biomater. Sci. Eng. 2020, 6, 2867–2878. [Google Scholar] [CrossRef]
- Dai, K.; Shen, T.; Yu, Y.; Deng, S.; Mao, L.; Wang, J.; Liu, C. Generation of rhBMP-2-Induced Juvenile Ossicles in Aged Mice. Biomaterials 2020, 258, 120284. [Google Scholar] [CrossRef]
- Medtronic Bone Grafting—Spine and Trauma Surgery—Infuse Bone Graft. Available online: https://www.medtronic.com/us-en/healthcare-professionals/products/spinal-orthopaedic/bone-grafting/infuse-bone-graft.html (accessed on 6 October 2024).
- McKay, W.F.; Peckham, S.M.; Badura, J.M. A Comprehensive Clinical Review of Recombinant Human Bone Morphogenetic Protein-2 (INFUSE® Bone Graft). Int. Orthop. 2007, 31, 729–734. [Google Scholar] [CrossRef] [PubMed]
- Carragee, E.J.; Hurwitz, E.L.; Weiner, B.K. A Critical Review of Recombinant Human Bone Morphogenetic Protein-2 Trials in Spinal Surgery: Emerging Safety Concerns and Lessons Learned. Spine J. 2011, 11, 471–491. [Google Scholar] [CrossRef] [PubMed]
- Medtronic’s Spinal Fusion Product Shown to Be Harmful in Bold Review by Medical Journal and Its Stanford Editors. Available online: http://med.stanford.edu/news/all-news/2011/06/common-spinal-fusion-product-shown-to-be-harmful-in-bold-review-by-medical-journal-and-its-stanford-editors.html (accessed on 8 October 2024).
- Burkus, J.K.; Heim, S.E.; Gornet, M.F.; Zdeblick, T.A. Is INFUSE Bone Graft Superior to Autograft Bone? An Integrated Analysis of Clinical Trials Using the LT-CAGE Lumbar Tapered Fusion Device. Clin. Spine Surg. 2003, 16, 113. [Google Scholar] [CrossRef] [PubMed]
- DeVine, J.G.; Dettori, J.R.; France, J.C.; Brodt, E.; McGuire, R.A. The Use of rhBMP in Spine Surgery: Is There a Cancer Risk? Evid.-Based Spine-Care J. 2012, 3, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Carreira, A.C.; Lojudice, F.H.; Halcsik, E.; Navarro, R.D.; Sogayar, M.C.; Granjeiro, J.M. Bone Morphogenetic Proteins: Facts, Challenges, and Future Perspectives. J. Dent. Res. 2014, 93, 335–345. [Google Scholar] [CrossRef]
- Zimmer, J.; Degenkolbe, E.; Wildemann, B.; Seemann, P. BMP Signaling in Regenerative Medicine. In Bioinformatics: Concepts, Methodologies, Tools, and Applications; IGI Global: Hershey, PA, USA, 2013; Volume 3, pp. 1252–1281. [Google Scholar]
- Feng, B.; Hu, D.; Zhang, Y. Accelerated Bone Regeneration by Chitosan/Nanometer Hydroxyapatite/Collagen Composite Incorporating BMP-7 Mimetic Peptide. J. Hard Tissue Biol. 2012, 21, 481–488. [Google Scholar] [CrossRef]
- Lee, H.-J.; Min, S.-K.; Park, Y.-H.; Park, J.-B. Application of Bone Morphogenetic Protein 7 Enhanced the Osteogenic Differentiation and Mineralization of Bone Marrow-Derived Stem Cells Cultured on Deproteinized Bovine Bone. Coatings 2021, 11, 642. [Google Scholar] [CrossRef]
- Ong, K.L.; Villarraga, M.L.; Lau, E.; Carreon, L.Y.; Kurtz, S.M.; Glassman, S.D. Off-Label Use of Bone Morphogenetic Proteins in the United States Using Administrative Data. Spine 2010, 35, 1794–1800. [Google Scholar] [CrossRef]
- White, A.P.; Vaccaro, A.R.; Hall, J.A.; Whang, P.G.; Friel, B.C.; McKee, M.D. Clinical Applications of BMP-7/OP-1 in Fractures, Nonunions and Spinal Fusion. Int. Orthop. 2007, 31, 735–741. [Google Scholar] [CrossRef]
- Sreekumar, V.; Aspera-Werz, R.H.; Tendulkar, G.; Reumann, M.K.; Freude, T.; Breitkopf-Heinlein, K.; Dooley, S.; Pscherer, S.; Ochs, B.G.; Flesch, I.; et al. BMP9 a Possible Alternative Drug for the Recently Withdrawn BMP7? New Perspectives for (Re-)Implementation by Personalized Medicine. Arch. Toxicol. 2017, 91, 1353–1366. [Google Scholar] [CrossRef]
- Sánchez, A.; Vázquez, A. Bioactive Peptides: A Review. Food Qual. Saf. 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Pierschbacher, M.D.; Ruoslahti, E. Cell Attachment Activity of Fibronectin Can Be Duplicated by Small Synthetic Fragments of the Molecule. Nature 1984, 309, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Hook, V.; Lietz, C.B.; Podvin, S.; Cajka, T.; Fiehn, O. Diversity of Neuropeptide Cell-Cell Signaling Molecules Generated by Proteolytic Processing Revealed by Neuropeptidomics Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2018, 29, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Ye, B.; Chen, S.; Zeng, L.; Lu, H.; Wan, Y.; Gao, Q.; Chen, K.; Qu, Y.; Wu, B.; et al. Neuro–Bone Tissue Engineering: Emerging Mechanisms, Potential Strategies, and Current Challenges. Bone Res. 2023, 11, 65. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.; Kanwar, S.S. Chapter 4—Bioactive Peptides: Synthesis, Functions and Biotechnological Applications. In Biotechnological Production of Bioactive Compounds; Verma, M.L., Chandel, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 107–137. ISBN 978-0-444-64323-0. [Google Scholar]
- Sivaraman, K.; Shanthi, C. Matrikines for Therapeutic and Biomedical Applications. Life Sci. 2018, 214, 22–33. [Google Scholar] [CrossRef]
- Huttunen, M.M.; Pekkinen, M.; Ahlström, M.E.B.; Lamberg-Allardt, C.J.E. Long-Term Effects of Tripeptide Ile-Pro-Pro on Osteoblast Differentiation in Vitro. J. Nutr. Biochem. 2008, 19, 708–715. [Google Scholar] [CrossRef]
- Moore, N.M.; Lin, N.J.; Gallant, N.D.; Becker, M.L. Synergistic Enhancement of Human Bone Marrow Stromal Cell Proliferation and Osteogenic Differentiation on BMP-2-Derived and RGD Peptide Concentration Gradients. Acta Biomater. 2011, 7, 2091–2100. [Google Scholar] [CrossRef]
- Ahn, C.-B.; Je, J.-Y. Bone Health-Promoting Bioactive Peptides. J. Food Biochem. 2019, 43, e12529. [Google Scholar] [CrossRef]
- Correa, R.; Arenas, J.; Montoya, G.; Hoz, L.; Lopez, S.; Salgado, F.; Arroyo, R.; Salmeron, N.; Romo, E.; Zeichner-David, M.; et al. Synthetic Cementum Protein 1-Derived Peptide Regulates Mineralization in Vitro and Promotes Bone Regeneration in Vivo. FASEB J. 2019, 33, 1167–1178. [Google Scholar] [CrossRef]
- Scarano, A.; Degidi, M.; Iezzi, G.; Pecora, G.; Piattelli, M.; Orsini, G.; Caputi, S.; Perrotti, V.; Mangano, C.; Piattelli, A. Maxillary Sinus Augmentation with Different Biomaterials: A Comparative Histologic and Histomorphometric Study in Man. Implant. Dent. 2006, 15, 197. [Google Scholar] [CrossRef]
- Radhakrishnan, S.; Anusuya, C.N. Comparative Clinical Evaluation of Combination Anorganic Bovine-Derived Hydroxyapatite Matrix (ABM)/Cell Binding Peptide (P-15) and Open Flap Debridement (DEBR) in Human Periodontal Osseous Defects: A 6 Month Pilot Study. J. Int. Acad. Periodontol. 2004, 6, 101–107. [Google Scholar] [PubMed]
- Hasan, S.; Al-Jamal, M.; Miller, A.; Higginbotham, D.O.; Cavazos, D.R.; Waheed, M.; Saleh, E.; McCarty, S.A. Efficacy and Outcome Measurement of iFactor/ABM/P-15 in Lumbar Spine Surgery: A Systematic Review. Glob. Spine J. 2023, 14, 1422. [Google Scholar] [CrossRef] [PubMed]
- Mobbs, R.J.; Maharaj, M.; Rao, P.J. Clinical Outcomes and Fusion Rates Following Anterior Lumbar Interbody Fusion with Bone Graft Substitute I-FACTOR, an Anorganic Bone Matrix/P-15 Composite. Spine 2014, 21, 867–876. [Google Scholar] [CrossRef] [PubMed]
- Arnold, P.M.; Vaccaro, A.R.; Sasso, R.C.; Fehlings, M.G.; Kopjar, B. P128. Six-Year Follow-up of i-FACTOR® Peptide Enhanced Bone Graft vs Autograft in Single Level ACDF in a Randomized Single Blinded FDA Investigational Device Exemption Study. Spine J. 2021, 21, S203. [Google Scholar] [CrossRef]
- Ryaby, J.T.; Sheller, M.R.; Levine, B.P.; Bramlet, D.G.; Ladd, A.L.; Carney, D.H. Thrombin Peptide TP508 Stimulates Cellular Events Leading to Angiogenesis, Revascularization, and Repair of Dermal and Musculoskeletal Tissues. J. Bone Jt. Surg. Am. 2006, 88 (Suppl. 3), 132–139. [Google Scholar] [CrossRef]
- Li, G.; Ryaby, J.T.; Carney, D.H.; Wang, H. Bone Formation Is Enhanced by Thrombin-Related Peptide TP508 during Distraction Osteogenesis. J. Orthop. Res. 2005, 23, 196–202. [Google Scholar] [CrossRef]
- Amir, L.R.; Li, G.; Schoenmaker, T.; Everts, V.; Bronckers, A.L.J.J. Effect of Thrombin Peptide 508 (TP508) on Bone Healing during Distraction Osteogenesis in Rabbit Tibia. Cell Tissue Res. 2007, 330, 35–44. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Touma, E.; Qi, Y.; Rousseau, E.; Quigg, R.J.; Ryaby, J.T. TP508 Accelerates Fracture Repair by Promoting Cell Growth over Cell Death. Biochem. Biophys. Res. Commun. 2007, 364, 187–193. [Google Scholar] [CrossRef]
- Hanratty, B.M.; Ryaby, J.T.; Pan, X.-H.; Li, G. Thrombin Related Peptide TP508 Promoted Fracture Repair in a Mouse High Energy Fracture Model. J. Orthop. Surg. Res. 2009, 4, 1. [Google Scholar] [CrossRef]
- Pountos, I.; Panteli, M.; Lampropoulos, A.; Jones, E.; Calori, G.M.; Giannoudis, P.V. The Role of Peptides in Bone Healing and Regeneration: A Systematic Review. BMC Med. 2016, 14, 103. [Google Scholar] [CrossRef]
- Ahn, J.-M.; Kassees, K.; Lee, T.-K.; Manandhar, B.; Yousif, A.M. Strategy and Tactics for Designing Analogs: Biochemical Characterization of the Large Molecules. In Comprehensive Medicinal Chemistry III; Chackalamannil, S., Rotella, D., Ward, S.E., Eds.; Elsevier: Oxford, UK, 2017; pp. 66–115. ISBN 978-0-12-803201-5. [Google Scholar]
- An, Y.; Zhao, J.; Nie, F.; Wu, Y.; Xia, Y.; Li, D. Parathyroid Hormone (PTH) Promotes ADSC Osteogenesis by Regulating SIK2 and Wnt4. Biochem. Biophys. Res. Commun. 2019, 516, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xue, Y.; Zhang, Y.; Wang, Y.; Hou, J. PTH1-34 Promotes Osteoblast Formation through Beclin1-Dependent Autophagic Activation. J. Bone Miner. Metab. 2021, 39, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Lin, T.; Yang, X.; Li, Y.; Xie, D.; Cui, H. Intermittent Parathyroid Hormone (1–34) Application Regulates cAMP-Response Element Binding Protein Activity to Promote the Proliferation and Osteogenic Differentiation of Bone Mesenchymal Stromal Cells, via the cAMP/PKA Signaling Pathway. Exp. Ther. Med. 2016, 11, 2399–2406. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, C.A.; Issack, P.S.; Shindle, L.; Werner, C.M.L.; Helfet, D.L.; Lane, J.M. Recent Advances toward the Clinical Application of PTH (1–34) in Fracture Healing. HSS J. 2009, 5, 149–153. [Google Scholar] [CrossRef]
- Cosman, F.; Nieves, J.W.; Dempster, D.W. Treatment Sequence Matters: Anabolic and Antiresorptive Therapy for Osteoporosis. J. Bone Miner. Res. 2017, 32, 198–202. [Google Scholar] [CrossRef]
- Ng, P.Y.; Ong, A.J.; Gale, L.S.; Dass, C.R. Treatment of Bone Disorders with Parathyroid Hormone: Success and Pitfalls. Pharmazie 2016, 71, 427–433. [Google Scholar] [CrossRef]
- Heldin, C.-H.; Westermark, B. Mechanism of Action and In Vivo Role of Platelet-Derived Growth Factor. Physiol. Rev. 1999, 79, 1283–1316. [Google Scholar] [CrossRef]
- Shah, P.; Keppler, L.; Rutkowski, J. A Review of Platelet Derived Growth Factor Playing Pivotal Role in Bone Regeneration. J. Oral Implantol. 2014, 40, 330–340. [Google Scholar] [CrossRef]
- Andrew, J.G.; Hoyland, J.A.; Freemont, A.J.; Marsh, D.R. Platelet-Derived Growth Factor Expression in Normally Healing Human Fractures. Bone 1995, 16, 455–460. [Google Scholar] [CrossRef]
- Chung, R.; Foster, B.K.; Zannettino, A.C.W.; Xian, C.J. Potential Roles of Growth Factor PDGF-BB in the Bony Repair of Injured Growth Plate. Bone 2009, 44, 878–885. [Google Scholar] [CrossRef]
- Solchaga, L.A.; Hee, C.K.; Roach, S.; Snel, L.B. Safety of Recombinant Human Platelet-Derived Growth Factor-BB in Augment(®) Bone Graft. J. Tissue Eng. 2012, 3, 2041731412442668. [Google Scholar] [CrossRef] [PubMed]
- Thoma, D.S.; Jung, R.E.; Hänseler, P.; Hämmerle, C.H.F.; Cochran, D.L.; Weber, F.E. Impact of Recombinant Platelet-Derived Growth Factor BB on Bone Regeneration: A Study in Rabbits. Int. J. Periodontics Restor. Dent. 2012, 32, 195–202. [Google Scholar]
- Luvizuto, E.R.; Tangl, S.; Dobsak, T.; Reich, K.; Gruber, R.; Sonoda, C.K.; Okamoto, R. Effect of Recombinant PDGF-BB on Bone Formation in the Presence of β-Tricalcium Phosphate and Bovine Bone Mineral Matrix: A Pilot Study in Rat Calvarial Defects. BMC Oral Health 2016, 16, 52. [Google Scholar] [CrossRef] [PubMed]
- Santana, R.B.; Santana, C.M. A Clinical Comparison of Guided Bone Regeneration with Platelet-Derived Growth Factor-Enhanced Bone Ceramic versus Autogenous Bone Block Grafting. Int. J. Oral Maxillofac. Implant. 2015, 30, 700–706. [Google Scholar] [CrossRef]
- Batra, C.; Goel, A.; Daneshparvar, N.; Hamada, Y. Clinical Evaluation of the Combination of rhPDGF-BB and Xenogeneic Bone Substitutes for Treatment of Severe Periodontal Intrabony Defects: A Case Series. Int. J. Periodontics Restor. Dent. 2023, 43, 192–200. [Google Scholar] [CrossRef]
- Singh, P.; Suresh, D.K. Clinical Evaluation of GEM 21S® and a Collagen Membrane with a Coronally Advanced Flap as a Root Coverage Procedure in the Treatment of Gingival Recession Defects: A Comparative Study. J. Indian. Soc. Periodontol. 2012, 16, 577. [Google Scholar] [CrossRef]
- Boyce, T.M. Formulated Demineralized Bone Grafts for Skeletal Applications. In Biomechanics and Biomaterials in Orthopedics, 2nd ed.; Springer: London, UK, 2016; pp. 95–113. [Google Scholar]
- Ma, T.; Ren, D.; Wang, J.; Fu, F.; Sun, W.Q.; Sun, H. Enhanced Osteogenicity of the Demineralized Bone-Dermal Matrix Composite by the Optimal Partial Demineralization for Sustained Release of Bioactive Molecules. J. Biomed. Mater. Res. Part B Appl. Biomater. 2024, 112, e35358. [Google Scholar] [CrossRef]
- Gruskin, E.; Doll, B.A.; Futrell, F.W.; Schmitz, J.P.; Hollinger, J.O. Demineralized Bone Matrix in Bone Repair: History and Use. Adv. Drug Deliv. Rev. 2012, 64, 1063–1077. [Google Scholar] [CrossRef]
- Pietrzak, W.S.; Woodell-May, J.; McDonald, N. Assay of Bone Morphogenetic Protein-2, -4, and -7 in Human Demineralized Bone Matrix. J. Craniofacial Surg. 2006, 17, 84–90. [Google Scholar] [CrossRef]
- Audisio, S.A.; Vaquero, P.; Torres, P.; Verna, E.; Ocampo, L.; Cristofolini, A.; Merkis, C. Radiological Evaluation of Radial Bone Defects Treated with Demineralized Bone Matrix in an Experimental Rabbit Model. Bulg. J. Vet. Med. 2015, 18, 132–139. [Google Scholar] [CrossRef]
- Urist, M.R. Bone: Formation by Autoinduction. Science 1965, 150, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Colnot, C.; Romero, D.M.; Huang, S.; Helms, J.A. Mechanisms of Action of Demineralized Bone Matrix in the Repair of Cortical Bone Defects. Clin. Orthop. Relat. Res.® 2005, 435, 69. [Google Scholar] [CrossRef] [PubMed]
- Flynn, J.M. OKU 10: Orthopaedic Knowledge Update; American Academy of Orthopaedic Surgeons: Rosemont, IL, USA, 2011; ISBN 978-0-89203-736-0. [Google Scholar]
- Bae, H.W.; Zhao, L.; Kanim, L.E.; Wong, P.; Delamarter, R.B.; Dawson, E.G. Intervariability and Intravariability of Bone Morphogenetic Proteins in Commercially Available Demineralized Bone Matrix Products. Spine 2006, 31, 1299–1306. [Google Scholar] [CrossRef] [PubMed]
- Wildemann, B.; Kadow-Romacker, A.; Haas, N.P.; Schmidmaier, G. Quantification of Various Growth Factors in Different Demineralized Bone Matrix Preparations. J. Biomed. Mater. Res. A 2007, 81, 437–442. [Google Scholar] [CrossRef]
- Purwanto, B.S.; Widhiyanto, L.; Chilmi, M.Z.; Lestari, P.; Buwana, D.S.; Edward, M. Comparison between Cancellous and Cortical Demineralized Bone Matrix in Terms of Porousity, Cytotoxicity, and Residual Calcium: Experimental Study Using Bovine Bone. J. Med. Pharm. Chem. Res. 2025, 7, 542–548. [Google Scholar] [CrossRef]
- Pacaccio, D.J.; Stern, S.F. Demineralized Bone Matrix: Basic Science and Clinical Applications. Clin. Podiatr. Med. Surg. 2005, 22, 599–606, vii. [Google Scholar] [CrossRef]
- Dinopoulos, H.T.; Giannoudis, P.V. Safety and Efficacy of Use of Demineralised Bone Matrix in Orthopaedic and Trauma Surgery. Expert. Opin. Drug Saf. 2006, 5, 847–866. [Google Scholar] [CrossRef]
- Lee, J.H.; Baek, H.-R.; Lee, K.M.; Lee, H.-K.; Im, S.B.; Kim, Y.S.; Lee, J.-H.; Chang, B.-S.; Lee, C.-K. The Effect of Poloxamer 407-Based Hydrogel on the Osteoinductivity of Demineralized Bone Matrix. Clin. Orthop. Surg. 2014, 6, 455–461. [Google Scholar] [CrossRef]
- Tian, M.; Yang, Z.; Kuwahara, K.; Nimni, M.E.; Wan, C.; Han, B. Delivery of Demineralized Bone Matrix Powder Using a Thermogelling Chitosan Carrier. Acta Biomater. 2012, 8, 753–762. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Ma, Y.; Niu, X.; Liu, J.; Gao, L.; Zhai, X.; Chu, K.; Han, B.; Yang, L.; et al. Preparation and Biocompatibility of Demineralized Bone Matrix/Sodium Alginate Putty. Cell Tissue Bank. 2017, 18, 205–216. [Google Scholar] [CrossRef]
- Ramis, J.M.; Blasco-Ferrer, M.; Calvo, J.; Villa, O.; Cladera, M.M.; Corbillo, C.; Gayà, A.; Monjo, M. Improved Physical and Osteoinductive Properties of Demineralized Bone Matrix by Gelatin Methacryloyl Formulation. J. Tissue Eng. Regen. Med. 2020, 14, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Wei, X.; Huang, Y.; Guan, C.; Zou, T.; Wang, S.; Liu, H.; Fan, Y. Delivery of Demineralized Bone Matrix Powder Using a Salt-Leached Silk Fibroin Carrier for Bone Regeneration. J. Mater. Chem. B 2015, 3, 3177–3188. [Google Scholar] [CrossRef] [PubMed]
- Banjar, A.A.; Mealey, B.L. A Clinical Investigation of Demineralized Bone Matrix Putty for Treatment of Periodontal Bony Defects in Humans. Int. J. Periodontics Restor. Dent. 2013, 33, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Ma, L.; Liu, X.; Jiang, X.; Yu, Z.; Zhao, D.; Zhang, L.; Zhang, C.; Huang, F. In Vitro and in Vivo Evaluation of Xenogeneic Bone Putty with the Carrier of Hydrogel Derived from Demineralized Bone Matrix. Cell Tissue Bank. 2018, 19, 591–601. [Google Scholar] [CrossRef]
- Heard, J.C.; Lee, Y.; Lambrechts, M.J.; Berthiaume, E.; D’Antonio, N.D.; Bodnar, J.; Paulik, J.; Mangan, J.J.; Canseco, J.A.; Kurd, M.F.; et al. The Impact of Demineralized Bone Matrix Characteristics on Pseudarthrosis and Surgical Outcomes after Posterolateral Lumbar Decompression and Fusion. J. Craniovertebral Junction Spine 2023, 14, 194. [Google Scholar] [CrossRef]
- Shehadi, J.A.; Elzein, S.M. Review of Commercially Available Demineralized Bone Matrix Products for Spinal Fusions: A Selection Paradigm. Surg. Neurol. Int. 2017, 8, 203. [Google Scholar] [CrossRef]
- LifeNet Health. Safety, Efficacy, & Use of ViviGen Cellular Bone Matrix Allograft in Orthopaedic Fracture Care: A Multi-Center Prospective Registry and Retrospective Data Collection Study; clinicaltrials.gov. 2023. [Google Scholar]
- Fiume, E.; Magnaterra, G.; Rahdar, A.; Verné, E.; Baino, F. Hydroxyapatite for Biomedical Applications: A Short Overview. Ceramics 2021, 4, 542–563. [Google Scholar] [CrossRef]
- Barinov, S.M.; Komlev, V.S. Calcium Phosphate Bone Cements. Inorg. Mater. 2011, 47, 1470–1485. [Google Scholar] [CrossRef]
- Zwingenberger, S.; Nich, C.; Valladares, R.D.; Yao, Z.; Stiehler, M.; Goodman, S.B. Recommendations and Considerations for the Use of Biologics in Orthopedic Surgery. BioDrugs 2012, 26, 245–256. [Google Scholar] [CrossRef]
- Liu, B.; Lun, D. Current Application of β-Tricalcium Phosphate Composites in Orthopaedics. Orthop. Surg. 2012, 4, 139–144. [Google Scholar] [CrossRef]
- Roberts, T.T.; Rosenbaum, A.J. Bone Grafts, Bone Substitutes and Orthobiologics: The Bridge between Basic Science and Clinical Advancements in Fracture Healing. Organogenesis 2012, 8, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Unosson, J. Physical Properties of Acidic Calcium Phosphate Cements. Doctoral Dissertation, Acta Universitatis Upsaliensis, Uppsala, Sweden, 2014. [Google Scholar]
- Xu, H.H.; Wang, P.; Wang, L.; Bao, C.; Chen, Q.; Weir, M.D.; Chow, L.C.; Zhao, L.; Zhou, X.; Reynolds, M.A. Calcium Phosphate Cements for Bone Engineering and Their Biological Properties. Bone Res. 2017, 5, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Boyan, B.; Cohen, D.; Schwartz, Z. Bone Tissue Grafting and Tissue Engineering Concepts. In Reference Module in Materials Science and Materials Engineering; Elsevier: Amsterdam, The Netherlands, 2017; ISBN 978-0-12-803581-8. [Google Scholar]
- Ozdemir, F.; Evans, I.; Bretcanu, O. Calcium Phosphate Cements for Medical Applications. In Clinical Applications of Biomaterials: State-of-the-Art Progress, Trends, and Novel Approaches; Kaur, G., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 91–121. ISBN 978-3-319-56059-5. [Google Scholar]
- Ma, G. Three Common Preparation Methods of Hydroxyapatite. IOP Conf. Ser. Mater. Sci. Eng. 2019, 688, 033057. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, J.H.; Shim, J.H.; Hwang, N.S.; Heo, C.Y. Bioactive Calcium Phosphate Materials and Applications in Bone Regeneration. Biomater. Res. 2019, 23, 4. [Google Scholar] [CrossRef]
- Graça, M.P.F.; Gavinho, S.R.; Graça, M.P.F.; Gavinho, S.R. Calcium Phosphate Cements in Tissue Engineering. In Contemporary Topics About Phosphorus in Biology and Materials; IntechOpen: London, UK, 2020; ISBN 978-1-78985-040-6. [Google Scholar]
- Bal, Z.; Kaito, T.; Korkusuz, F.; Yoshikawa, H. Bone Regeneration with Hydroxyapatite-Based Biomaterials. Emergent Mater. 2020, 3, 521–544. [Google Scholar] [CrossRef]
- Bohner, M.; Santoni, B.L.G.; Döbelin, N. β-Tricalcium Phosphate for Bone Substitution: Synthesis and Properties. Acta Biomater. 2020, 113, 23–41. [Google Scholar] [CrossRef]
- Gillman, C.E.; Jayasuriya, A.C. FDA-Approved Bone Grafts and Bone Graft Substitute Devices in Bone Regeneration. Mater. Sci. Eng. C 2021, 130, 112466. [Google Scholar] [CrossRef]
- Liu, C.C.; Solderer, A.; Heumann, C.; Attin, T.; Schmidlin, P.R. Tricalcium Phosphate (-Containing) Biomaterials in the Treatment of Periodontal Infra-Bony Defects: A Systematic Review and Meta-Analysis. J. Dent. 2021, 114, 103812. [Google Scholar] [CrossRef]
- Mohd, N.; Razali, M.; Ghazali, M.J.; Abu Kasim, N.H. 3D-Printed Hydroxyapatite and Tricalcium Phosphates-Based Scaffolds for Alveolar Bone Regeneration in Animal Models: A Scoping Review. Materials 2022, 15, 2621. [Google Scholar] [CrossRef]
- Mishchenko, O.; Yanovska, A.; Kosinov, O.; Maksymov, D.; Moskalenko, R.; Ramanavicius, A.; Pogorielov, M. Synthetic Calcium–Phosphate Materials for Bone Grafting. Polymers 2023, 15, 3822. [Google Scholar] [CrossRef]
- Khalid, H.; Chaudhry, A.A. 4—Basics of Hydroxyapatite—Structure, Synthesis, Properties, and Clinical Applications. In Handbook of Ionic Substituted Hydroxyapatites; Khan, A.S., Chaudhry, A.A., Eds.; Woodhead Publishing Series in Biomaterials; Woodhead Publishing: Cambridge, UK, 2020; pp. 85–115. ISBN 978-0-08-102834-6. [Google Scholar]
- Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of Hydroxyapatite with Antibacterial Properties Using a Microwave-Assisted Combustion Method. Sci. Rep. 2019, 9, 4015. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Muhammad, N.M.; Noviyanti, A.R.; Risdiana, R. The Effect of Temperature Synthesis on the Purity and Crystallinity of Hydroxyapatite. Key Eng. Mater. 2020, 860, 228–233. [Google Scholar] [CrossRef]
- Arokiasamy, P.; Al Bakri Abdullah, M.M.; Abd Rahim, S.Z.; Luhar, S.; Sandu, A.V.; Jamil, N.H.; Nabiałek, M. Synthesis Methods of Hydroxyapatite from Natural Sources: A Review. Ceram. Int. 2022, 48, 14959–14979. [Google Scholar] [CrossRef]
- Oryan, A.; Meimandi Parizi, A.; Shafiei-Sarvestani, Z.; Bigham, A.S. Effects of Combined Hydroxyapatite and Human Platelet Rich Plasma on Bone Healing in Rabbit Model: Radiological, Macroscopical, Hidtopathological and Biomechanical Evaluation. Cell Tissue Bank. 2012, 13, 639–651. [Google Scholar] [CrossRef]
- Kattimani, V.S.; Kondaka, S.; Lingamaneni, K.P. Hydroxyapatite–-Past, Present, and Future in Bone Regeneration. Bone Tissue Regen. Insights 2016, 7, BTRI.S36138. [Google Scholar] [CrossRef]
- Bernardo, M.P.; da Silva, B.C.R.; Hamouda, A.E.I.; de Toledo, M.A.S.; Schalla, C.; Rütten, S.; Goetzke, R.; Mattoso, L.H.C.; Zenke, M.; Sechi, A. PLA/Hydroxyapatite Scaffolds Exhibit in Vitro Immunological Inertness and Promote Robust Osteogenic Differentiation of Human Mesenchymal Stem Cells without Osteogenic Stimuli. Sci. Rep. 2022, 12, 2333. [Google Scholar] [CrossRef]
- Trzaskowska, M.; Vivcharenko, V.; Przekora, A. The Impact of Hydroxyapatite Sintering Temperature on Its Microstructural, Mechanical, and Biological Properties. Int. J. Mol. Sci. 2023, 24, 5083. [Google Scholar] [CrossRef]
- Lu, T.; Yan, S.; Shi, H.; Ye, J. Synthesis, Characterization, In Vitro Cytological Responses, and In Vivo Bone Regeneration Effects of Low-Crystalline Nanocarbonated Hydroxyapatite. ACS Biomater. Sci. Eng. 2023, 9, 918–931. [Google Scholar] [CrossRef]
- Fendi, F.; Abdullah, B.; Suryani, S.; Raya, I.; Tahir, D.; Iswahyudi, I. Hydroxyapatite Based for Bone Tissue Engineering: Innovation and New Insights in 3D Printing Technology. Polym. Bull. 2024, 81, 1097–1116. [Google Scholar] [CrossRef]
- Gonzalez-Ojeda, A. Therapeutic Efficacy of Tricalcium Phosphate and Chitosan as Bone Regenerator Versus Autologous Graft in Surgery for Mandibular Fracture; clinicaltrials.gov. 2023. [Google Scholar]
- Xijing Hospital. The Clinical Therapeutic Effects and Safety of Tissue-Engineered Bone; clinicaltrials.gov. 2017. [Google Scholar]
- Punyanitya, S.; Koonawoot, R.; Ruksanti, A.; Thiensem, S.; Raksujarit, A.; Sontichai, W. In Vivo Clinical Trial of Porous Starch—Hydroxyapatite Composite Biomaterials for Bone Regeneration. Key Eng. Mater. 2017, 744, 480–484. [Google Scholar] [CrossRef]
- Study Details|Mesenchymal Stem Cells; Donor and Role in Management and Reconstruction of Nonunion Fracture|ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT01626625?term=NCT01626625&rank=1 (accessed on 20 November 2024).
- Kalaiselvan, E.; Maiti, S.K.; Shivaramu, S.; Banu, S.A.; Sharun, K.; Mohan, D.; Palakkara, S.; Bag, S.; Sahoo, M.; Ramalingam, S.; et al. Bone Marrow-Derived Mesenchymal Stem Cell-Laden Nanocomposite Scaffolds Enhance Bone Regeneration in Rabbit Critical-Size Segmental Bone Defect Model. J. Funct. Biomater. 2024, 15, 66. [Google Scholar] [CrossRef] [PubMed]
- Kiany, F.; Sarafraz, N.; Tanideh, N.; Bordbar, H.; Andisheh-Tadbir, A.; Zare, S.; Farshidfar, N.; Zarei, M. Bone Repair Potential of Collagen-Poly(3-Hydroxybutyrate)-Carbon Nanotubes Scaffold Loaded with Mesenchymal Stem Cells for the Reconstruction of Critical-Sized Mandibular Defects. J. Stomatol. Oral Maxillofac. Surg. 2024, 125, 101670. [Google Scholar] [CrossRef] [PubMed]
- Al-Qadhi, G.; Soliman, M.; Abou-Shady, I.; Rashed, L. Gingival Mesenchymal Stem Cells as an Alternative Source to Bone Marrow Mesenchymal Stem Cells in Regeneration of Bone Defects: In Vivo Study. Tissue Cell 2020, 63, 101325. [Google Scholar] [CrossRef] [PubMed]
- Royan Institute. Effect of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation in Reconstructing Human Bone Defects; clinicaltrials.gov. 2011. [Google Scholar]
- Beguin, Y. Treatment of Atrophic Nonunion Fractures by Autologous Mesenchymal Stem Cell Percutaneous Grafting. A Randomized, Double-Blind, Controlled Study; clinicaltrials.gov. 2021. [Google Scholar]
- Hospital Universitario Central de Asturias. Treatment of Long Bone Nonunion with Autologous Bone Marrow Stem Cells. Phase I/II Study; clinicaltrials.gov. 2015. [Google Scholar]
- Marzi, I. Cell Based Therapy by Implanted Bone Marrow-Derived Mononuclear Cells (BMC) for Bone Augmentation of Plate-Stabilized Proximal Humeral Fractures; clinicaltrials.gov. 2016. [Google Scholar]
- Study Details|Evaluation the Treatment of Nonunion of Long Bone Fracture of Lower Extremities (Femur and Tibia) Using Mononuclear Stem Cells from the Iliac Wing Within a 3-D Tissue Engineered Scaffold|ClinicalTrials.Gov. Available online: https://www.clinicaltrials.gov/study/NCT01958502?term=NCT01958502&rank=1 (accessed on 20 November 2024).
- Solano, D.D. Treatment of Nonunion After Fractures (Pseudoartrosis) Using Mesenchymal Stromal Cells (MSCs); clinicaltrials.gov. 2023. [Google Scholar]
- Nakielski, P.; Kosik-Kozioł, A.; Rinoldi, C.; Rybak, D.; More, N.; Wechsler, J.; Lehmann, T.P.; Głowacki, M.; Stępak, B.; Rzepna, M.; et al. Injectable PLGA Microscaffolds with Laser-Induced Enhanced Microporosity for Nucleus Pulposus Cell Delivery. Small 2024, 2404963, Early View. [Google Scholar] [CrossRef]
- Ji, D.; Lin, Y.; Guo, X.; Ramasubramanian, B.; Wang, R.; Radacsi, N.; Jose, R.; Qin, X.; Ramakrishna, S. Electrospinning of Nanofibres. Nat. Rev. Methods Primers 2024, 4, 1. [Google Scholar] [CrossRef]
- Kijeńska, E.; Prabhakaran, M.P.; Swieszkowski, W.; Kurzydlowski, K.J.; Ramakrishna, S. Electrospun Bio-Composite P(LLA-CL)/Collagen I/Collagen III Scaffolds for Nerve Tissue Engineering. J. Biomed. Mater. Res. B Appl. Biomater. 2012, 100, 1093–1102. [Google Scholar] [CrossRef]
- Anjum, S.; Rahman, F.; Pandey, P.; Arya, D.K.; Alam, M.; Rajinikanth, P.S.; Ao, Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 9206. [Google Scholar] [CrossRef]
- Zhao, T.; Zhang, J.; Gao, X.; Yuan, D.; Gu, Z.; Xu, Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J. Mater. Chem. B 2022, 10, 6078–6106. [Google Scholar] [CrossRef]
- Dong, R.; Bai, Y.; Dai, J.; Deng, M.; Zhao, C.; Tian, Z.; Zeng, F.; Liang, W.; Liu, L.; Dong, S. Engineered Scaffolds Based on Mesenchymal Stem Cells/Preosteoclasts Extracellular Matrix Promote Bone Regeneration. J. Tissue Eng. 2020, 11, 2041731420926918. [Google Scholar] [CrossRef]
- Wu, H.; Yin, G.; Pu, X.; Wang, J.; Liao, X.; Huang, Z. Coordination of Osteoblastogenesis and Osteoclastogenesis by the Bone Marrow Mesenchymal Stem Cell-Derived Extracellular Matrix To Promote Bone Regeneration. ACS Appl. Bio Mater. 2022, 5, 2913–2927. [Google Scholar] [CrossRef]
- Sun, T.; Yao, S.; Liu, M.; Yang, Y.; Ji, Y.; Cui, W.; Qu, Y.; Guo, X. Composite Scaffolds of Mineralized Natural Extracellular Matrix on True Bone Ceramic Induce Bone Regeneration Through Smad1/5/8 and ERK1/2 Pathways. Tissue Eng. Part. A 2018, 24, 502–515. [Google Scholar] [CrossRef] [PubMed]
- Elangomannan, S.; Louis, K.; Dharmaraj, B.M.; Kandasamy, V.S.; Soundarapandian, K.; Gopi, D. Carbon Nanofiber/Polycaprolactone/Mineralized Hydroxyapatite Nanofibrous Scaffolds for Potential Orthopedic Applications. ACS Appl. Mater. Interfaces 2017, 9, 6342–6355. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Ji, X.; Liu, X.; Zhou, J.; Zhang, J.; Chen, Y.; Wu, Q. Different Cellulose Nanofibers Impact Properties of Calcium Phosphate Silicate Cement for Bone Tissue Engineering. Cellulose 2023, 30, 1011–1029. [Google Scholar] [CrossRef]
- Shui, W.; Zhang, W.; Yin, L.; Nan, G.; Liao, Z.; Zhang, H.; Wang, N.; Wu, N.; Chen, X.; Wen, S.; et al. Characterization of Scaffold Carriers for BMP9-Transduced Osteoblastic Progenitor Cells in Bone Regeneration. J. Biomed. Mater. Res. Part A 2014, 102, 3429–3438. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Zhou, G.; Cao, Y.; Liu, W.; Zhang, Z.-Y. Demineralized Bone Matrix-Based Microcarrier Scaffold Favors Vascularized Large Bone Regeneration in Vivo in a Rat Model. J. Biomater. Appl. 2018, 33, 182–195. [Google Scholar] [CrossRef]
- Ali, F.; Kalva, S.N.; Koc, M. Advancements in 3D Printing Techniques for Biomedical Applications: A Comprehensive Review of Materials Consideration, Post Processing, Applications, and Challenges. Discov. Mater. 2024, 4, 53. [Google Scholar] [CrossRef]
- Percival, K.M.; Paul, V.; Husseini, G.A. Recent Advancements in Bone Tissue Engineering: Integrating Smart Scaffold Technologies and Bio-Responsive Systems for Enhanced Regeneration. Int. J. Mol. Sci. 2024, 25, 6012. [Google Scholar] [CrossRef]
- Baptista, R.; Guedes, M. Morphological and Mechanical Characterization of 3D Printed PLA Scaffolds with Controlled Porosity for Trabecular Bone Tissue Replacement. Mater. Sci. Eng. C 2021, 118, 111528. [Google Scholar] [CrossRef]
- Study Details|Polycaprolactone/Tricalcium Phosphate (PCL/TCP) v Titanium Orbital Implant: Randomised Trial|ClinicalTrials.Gov. Available online: https://clinicaltrials.gov/study/NCT01119144?cond=bone%20fracture&term=PCL&rank=1 (accessed on 20 November 2024).
- Patel, N.A.; O’Bryant, S.; Rogers, C.D.; Boyett, C.K.; Chakravarti, S.; Gendreau, J.; Brown, N.J.; Pennington, Z.A.; Hatcher, N.B.; Kuo, C.; et al. Three-Dimensional-Printed Titanium Versus Polyetheretherketone Cages for Lumbar Interbody Fusion: A Systematic Review of Comparative In Vitro, Animal, and Human Studies. Neurospine 2023, 20, 451–463. [Google Scholar] [CrossRef]
- Chang, S.Y.; Kang, D.-H.; Cho, S.K. Innovative Developments in Lumbar Interbody Cage Materials and Design: A Comprehensive Narrative Review. Asian Spine J. 2024, 18, 444–457. [Google Scholar] [CrossRef]
- Lewandrowski, K.-U.; Vira, S.; Elfar, J.C.; Lorio, M.P. Advancements in Custom 3D-Printed Titanium Interbody Spinal Fusion Cages and Their Relevance in Personalized Spine Care. J. Pers. Med. 2024, 14, 809. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mandal, S.S.; Bauri, S.; Maiti, P. 3D Bioprinting and Its Innovative Approach for Biomedical Applications. MedComm 2022, 4, e194. [Google Scholar] [CrossRef] [PubMed]
- Pan, R.L.; Martyniak, K.; Karimzadeh, M.; Gelikman, D.G.; DeVries, J.; Sutter, K.; Coathup, M.; Razavi, M.; Sawh-Martinez, R.; Kean, T.J. Systematic Review on the Application of 3D-Bioprinting Technology in Orthoregeneration: Current Achievements and Open Challenges. J. Exp. Orthop. 2022, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Cornejo, J.; Cornejo-Aguilar, J.A.; Vargas, M.; Helguero, C.G.; Milanezi de Andrade, R.; Torres-Montoya, S.; Asensio-Salazar, J.; Rivero Calle, A.; Martínez Santos, J.; Damon, A.; et al. Anatomical Engineering and 3D Printing for Surgery and Medical Devices: International Review and Future Exponential Innovations. Biomed. Res. Int. 2022, 2022, 6797745. [Google Scholar] [CrossRef]
- Kabra, D.A.; Garg, D.B. Current Applications of 3-Dimensional Printing in Spine Surgery. J. Orthop. 2023, 41, 28–32. [Google Scholar] [CrossRef]
- Liu, S.; Cheng, L.; Liu, Y.; Zhang, H.; Song, Y.; Park, J.-H.; Dashnyam, K.; Lee, J.-H.; Khalak, F.A.-H.; Riester, O.; et al. 3D Bioprinting Tissue Analogs: Current Development and Translational Implications. J. Tissue Eng. 2023, 14, 20417314231187113. [Google Scholar] [CrossRef]
Functional Category | Peptide | Role |
---|---|---|
Osteo-differentiation | PTH1-34 Recombinant form of N-terminally truncated and 34-amino acid-containing human parathyroid hormone (1–34) | Promotes osteoblast formation by activating the SIK2, Wnt4, and cAMP/PKA signaling pathways, thus enhancing osteogenesis and bone mineralization. |
Facilitate cell adhesion | P-15 Osteogenic cell-binding peptide | Enhances bone healing through an “attract, attach, activate” mechanism, minimizing ectopic growth risk. Demonstrated high fusion rates in clinical studies. |
Contribute to neovascularization | TP508 Peptide fragment of the receptor-binding domain of the native human thrombin molecule | Accelerates bone formation, facilitates healing in bone defects, and mitigates the adverse effects of fibrosis and complications associated with fractures. |
Forms of Calcium-Based Bone Grafts | Product (Manufacturer) | Advantages | Disadvantages |
---|---|---|---|
Calcium phosphate cements (CPC) | - Norian™ SRS (DePuy, Warsaw, IN, USA) - ChronOS™ Inject (DePuy) - BoneSync™ (Arthrex, Naples, FL, USA) - Ossilix™ (Exactech, Gainesville, FL, USA) - HydroSet™ (Stryker, Singapore) - Quickset™ (Arthrex) - α-BSM (DePuy) - CopiOs® (ZimVie Spine, Palm Beach Gardens, FL, USA) - Graftys® (Graftys, Vaulx-en-Velin, France) - BIOPEX-R® (HOYA Technosurgical Corporation, Tokyo, Japan) | - Exhibits a chemical composition closely resembling the mineral component of bone, which enhances its bioactivity and osteoconductivity, facilitating strong integration with host bone - Resorption rate can be adjusted by modifying the phase composition, allowing for tailored clinical applications - Demonstrates self-hardening capabilities through body-temperature-induced dissolution and precipitation reactions - Minimal shrinkage during the setting process - Ability to fill cavities of complex configuration - Absence of exothermic reaction during setting, preventing thermal damage to adjacent tissues - Injectable, reducing the invasiveness and risk of infection during the operation - Can be used as delivery systems for therapeutic peptides, antibacterials, anticancer drugs, anti-inflammatory drugs, or growth factors | - Brittle - Relatively low bending/flexural strengths - Poor mechanical properties that limit broader clinical application - Can only be used in combination with internal or external fixation or in low- or non-load-bearing applications - If not adequately supported, there is a risk of poor integration with existing bone, leading to potential graft failure - Potential for inflammatory reaction and embolism - Slow degradation rates, lower than new bone formation rate, which might limit natural healing - The injection and setting of CPCs can be technically challenging, requiring skilled application to ensure optimal outcomes - Intrinsic porosity reduces strength |
Calcium sulfate (CaSO4) | - OsteoSet® (Stryker) - MIIG® INJECTABLE Graft (Wright Medical Technology, Arlington, TN, USA) - CERAMENT® (Bonesupport, Lund, Sweden) - PRO-DENSE® (Stryker) - Stimulan® (Biocomposites, Biel, Switzerland) - BondBone® (MIS Implants Ahihud, Israel) - PRO-STIM™ (Stryker) | - Degrades primarily through dissolution rather than cell-mediated resorption, making it suitable for specific applications such as filling small bone defects - Osteoconductive - Exhibits compressive strength greater than cancellous bone - Suitable for filling small bone defects or used with rigid internal fixation - Inexpensive and easy to prepare - Well-accepted by surrounding tissues, minimizing the risk of adverse reactions and facilitating smoother integration - The dissolution process acidifies the surrounding environment, which can enhance its antimicrobial effectiveness, making it a superior adjunct to non-osteogenic materials - Can act as a vehicle for drug delivery (antimicrobials, antibacterials, etc.) | - Provides no internal structural support - Absence of macroporosity, inhibiting osteoconduction within the material - Not suitable for large bone defects - Rapid biodegradability (biodegrades after 4–8 weeks, much faster than the calcium phosphate cements)—this rapid dissolution could be problematic, as it is faster than the ingrowth of new bone, and therefore, the void may not be filled throughout the process - Due to its rapid resorption and lack of structural support, calcium sulfate may not be suitable for load-bearing applications |
Hydroxyapatite (HA) | - Pro Osteon (Biomet, Warsaw, IN, USA) - BoneSource™ (Osteogenics, Lubbock, TX, USA) - ReproBone® (Ceramisys, England, UK) - Calcibon® (Biomet) - PerOssal® (Osartis, Münster, Germany) | - Strong stability and biological activity - Exhibits good cell affinity, which promotes adhesion and proliferation of the osteoblasts and direct bone integration - The most stable calcium phosphate with low solubility in physiological environments - Has a chemical structure highly analogous to that of natural bone minerals, promoting biocompatibility and integration with host tissue - Nontoxic, minimally inflammatory, showing no adverse immune reactions or irritation in vivo - Size and porosity of HA can be adjusted in order to increase the osteoconduction - Compared to autograft, HA blocks provided quicker fusion and superior stiffness - Can encourage the formation of new blood vessels, which is crucial for the healing and regeneration of bone - Can be engineered into various forms, such as granules, scaffolds, or coatings for implants, allowing for tailored applications in different surgical contexts - Can be combined with growth factors, cells, and/or molecules for better osteoinductivity | - Inelastic and brittle, which can lead to structural fractures and limitations in molding into complex or load-bearing geometries, potentially impacting its efficacy in bone regeneration applications - Limited fracture toughness, which restricts its use in high-stress environments, as it may compromise structural integrity under mechanical load - Poor mechanical properties, including low biodegradation and tensile strength - Exhibits a very slow resorption rate and is minimally absorbed by the body, which can impede the natural bone remodeling process. This prolonged presence may result in a mismatch between graft resorption and new bone formation, potentially affecting the healing dynamics in certain clinical applications - Low fatigue resistance in a physiological environment |
Tricalcium phosphate (TCP) | - genex® (Biocomposites) - Allogran-R® (Biocomposites) - Cerasorb® (Curasan, Kleinostheim, Germany) - chronOS™ (DePuy) - SynthoGraft® (Bicon, Boston, MA, USA) - Vitoss® (Stryker) - CELLPLEX® (Wright Medical Technology) - MasterGraft® (Medtronic) | - High similarity in structure and composition to bone mineral - Excellent biocompatibility - Osteoconductive properties - Alloplastic - Facilitates bone regeneration by providing a scaffold for the in-growth of cellular and vascular components - Degradation kinetics closely align with endogenous bone formation rates, facilitating a controlled replacement by new bone tissue as it resorbs | - Brittle, which limits its use in load-bearing applications due to low mechanical strength and fracture toughness - Lacks osteoinductivity and osteogenicity - Poor mechanical properties, which makes it unable to resist against fatigue and insufficient holding power, thereby making it susceptible to scaffold collapse or internal fracture, which restrains its application in weight-bearing areas |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łuczak, J.W.; Palusińska, M.; Matak, D.; Pietrzak, D.; Nakielski, P.; Lewicki, S.; Grodzik, M.; Szymański, Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. Int. J. Mol. Sci. 2024, 25, 12766. https://doi.org/10.3390/ijms252312766
Łuczak JW, Palusińska M, Matak D, Pietrzak D, Nakielski P, Lewicki S, Grodzik M, Szymański Ł. The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. International Journal of Molecular Sciences. 2024; 25(23):12766. https://doi.org/10.3390/ijms252312766
Chicago/Turabian StyleŁuczak, Julia Weronika, Małgorzata Palusińska, Damian Matak, Damian Pietrzak, Paweł Nakielski, Sławomir Lewicki, Marta Grodzik, and Łukasz Szymański. 2024. "The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration" International Journal of Molecular Sciences 25, no. 23: 12766. https://doi.org/10.3390/ijms252312766
APA StyleŁuczak, J. W., Palusińska, M., Matak, D., Pietrzak, D., Nakielski, P., Lewicki, S., Grodzik, M., & Szymański, Ł. (2024). The Future of Bone Repair: Emerging Technologies and Biomaterials in Bone Regeneration. International Journal of Molecular Sciences, 25(23), 12766. https://doi.org/10.3390/ijms252312766