Integrating Remote Sensing and Street View Imagery for Mapping Slums
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Datasets
3.1.1. Slum Reference Map
3.1.2. Remote Sensing Imagery
3.1.3. Ancillary Data
3.1.4. Street View Imagery
3.2. Methodology
3.2.1. Identification Stage
3.2.2. Implementation Stage
Data Preparation
Fully Convolutional Neural Network
Classification Using Only RSI
Classification Using Only SVI
Classification Using an Integration of SVI with RSI
3.2.3. Accuracy Evaluation
4. Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- World Urbanization Prospects. 2018. Available online: https://population.un.org/wup/ (accessed on 4 September 2022).
- World Urban Population. Available online: https://statisticstimes.com/demographics/world-urban-population.php (accessed on 4 September 2022).
- Sachs, J.; Schmidt-Traub, G.; Kroll, C.; Lafortune, G.; Fuller, G. Sustainable Development Report 2020; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- UN-Habitat. Metadata on SDGs Indicator 11.1.1 Indicator Category: Tier I; UN-Habitat: Nairobi, Kenya, 2018. [Google Scholar]
- UN-Habitat. Slum ALMANAC 2015–2016, Tracking Improvement in the Lives of Slum Dwellers; UN-Habitat: Nairobi, Kenya, 2016. [Google Scholar]
- Duque, J.C.; Patino, J.E.; Ruiz, L.A.; Pardo-Pascual, J.E. Measuring Intra-Urban Poverty Using Land Cover and Texture Metrics Derived from Remote Sensing Data. Landsc. Urban Plan. 2015, 135, 11–21. [Google Scholar] [CrossRef]
- Nijman, J. Against the Odds: Slum Rehabilitation in Neoliberal Mumbai. Cities 2008, 25, 73–85. [Google Scholar] [CrossRef]
- Carr-Hill, R. Missing Millions and Measuring Development Progress. World Dev. 2013, 46, 30–44. [Google Scholar] [CrossRef]
- Mahabir, R.; Croitoru, A.; Crooks, A.; Agouris, P.; Stefanidis, A. A Critical Review of High and Very High-Resolution Remote Sensing Approaches for Detecting and Mapping Slums: Trends, Challenges and Emerging Opportunities. Urban Science 2018, 2, 8. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M.; Thomson, D.R.; Boo, G.; Mahabir, R.; Grippa, T.; Vanhuysse, S.; Engstro, R.; Ndugwa, R.; Makau, J.; Darin, E.; et al. The Role of Earth Observation in an Integrated Deprived Area Mapping System for Low-to-Middle Income Countries. Remote Sens. 2020, 12, 982. [Google Scholar] [CrossRef] [Green Version]
- Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Chapter 6.1 Detecting Informal Settlements from QuickBird Data in Rio de Janeiro Using an Object-Based Approach. In Object-Based Image Analysis; Springer: Berlin/Heidelberg, Germany, 2008; pp. 531–553. [Google Scholar]
- Taubenbock, H.; Kraff, N.J. The Physical Face of Slums a Structural Comparison of Slums in Mumbai India Based on Remotely Sensed Data. J. Hous. Built Environ. 2013, 29, 15–38. [Google Scholar] [CrossRef]
- Pratomo, J.; Kuffer, M.; Kohli, D.; Martinez, J. Application of the Trajectory Error Matrix for Assessing the Temporal Transferability of OBIA for Slum Detection. Eur. J. Remote Sens. 2018, 51, 838–849. [Google Scholar] [CrossRef] [Green Version]
- Pratomo, J.; Kuffer, M.; Martinez, J.; Kohli, D. Coupling Uncertainties with Accuracy Assessment in Object-Based Slum Detections, Case Study: Jakarta, Indonesia. Remote Sens. 2017, 9, 1164. [Google Scholar] [CrossRef] [Green Version]
- Kuffer, M.; Pfeffer, K.; Sliuzas, R. Slums from Space-15 Years of Slum Mapping Using Remote Sensing. Remote. Sens. 2016, 8, 455. [Google Scholar] [CrossRef] [Green Version]
- Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Queiroz Feitosa, R.; van der Meer, F.; van der Werff, H.; van Coillie, F.; et al. Geographic Object-Based Image—nalysis—Towards a New Paradigm. ISPRS J. Photogramm. Remote Sens. 2014, 87, 180–191. [Google Scholar] [CrossRef]
- Mahabir, R.; Agouris, P.; Stefanidis, A.; Croitoru, A.; Crooks, A.T. Detecting and Mapping Slums Using Open Data: A Case Study in Kenya. Int. J. Digit. Earth 2020, 13, 683–707. [Google Scholar] [CrossRef]
- Kuffer, M.; Wang, J.; Nagenborg, M.; Pfeffer, K.; Kohli, D.; Sliuzas, R.; Persello, C. The Scope of Earth-Observation to Improve the Consistency of the SDG Slum Indicator. ISPRS Int. J. Geo-Inf. 2018, 7, 428. [Google Scholar] [CrossRef] [Green Version]
- Mboga, N.; Persello, C.; Bergado, J.R.; Stein, A. Detection of Informal Settlements from VHR Images Using Convolutional Neural Networks. Remote Sens. 2017, 9, 1106. [Google Scholar] [CrossRef] [Green Version]
- Ajami, A.; Kuffer, M.; Persello, C.; Pfeffer, K. Identifyin “a Slum” Degree of Deprivation from VHR Images Using Convolutional Neural Networks. Remote Sens. 2019, 11, 1282. [Google Scholar] [CrossRef] [Green Version]
- Leonita, G.; Kuffer, M.; Sliuzas, R.; Persello, C. Machine Learning-Based Slum Mapping in Support of Slum Upgrading Programs: The Case of Bandung City, Indonesia. Remote Sens. 2018, 10, 1522. [Google Scholar] [CrossRef] [Green Version]
- Verma, D.; Jana, A.; Ramamritham, K. Transfer Learning Approach to Map Urban Slums Using High and Medium Resolution Satellite Imagery. Habitat Int. 2019, 88, 101981. [Google Scholar] [CrossRef]
- Workman, S.; Zhai, M.; Crandall, D.J.; Jacobs, N. A Unified Model for Near and Remote Sensing. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017. [Google Scholar]
- Cao, R.; Zhu, J.; Tu, W.; Li, Q.; Cao, J.; Liu, B.; Zhang, Q.; Qiu, G. Integrating Aerial and Street View Images for Urban Land Use Classification. Remote. Sens. 2018, 10, 1553. [Google Scholar] [CrossRef] [Green Version]
- Barbierato, E.; Bernetti, I.; Capecchi, I.; Saragosa, C. Integrating Remote Sensing and Street View Images to Quantify Urban Forest Ecosystem Services. Remote Sens. 2020, 12, 329. [Google Scholar] [CrossRef] [Green Version]
- Martinez, R.; Masron, I.N. Jakarta A City of Cities; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Sustainable Development Knowledge Platform. Available online: https://sustainabledevelopment.un.org/vnrs/ (accessed on 4 September 2022).
- Najmi, A. Integrating Remote Sensing and Street View Images to Map Slums Using Deep Learning Approach. Master’s Thesis, University of Twente, Enschede, The Netherlands, August 2021. Available online: http://essay.utwente.nl/88704/ (accessed on 1 September 2022).
- Persello, C.; Stein, A. Deep Fully Convolutional Networks for the Detection of Informal Settlements in VHR Images. IEEE Geosci. Remote. Sens. Lett. 2017, 14, 2325–2329. [Google Scholar] [CrossRef]
- Yu, F.; Koltun, V. Multi-Scale Context Aggregation by Dilated Convolutions. arXiv 2015, arXiv:1511.07122. [Google Scholar]
- Jolliffe, I.T. Principal-Component-Analysis-2002; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Hossin, M.; Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations. Int. J. Data Min. Knowl. Manag. Process 2015, 5, 1–11. [Google Scholar]
- Liu, Q.; Salberg, A.-B.; Jenssen, R. A Comparison of Deep Learning Architectures for Semantic Mapping of Very High Resolution Images. In Proceedings of the IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Kohli, D.; Sliuzas, R.; Kerle, N.; Stein, A. An Ontology of Slums for Image-Based Classification. Comput. Environ. Urban Syst. 2012, 36, 154–163. [Google Scholar] [CrossRef]
Characteristics | Mapping Indicators |
---|---|
Absence of tenure security | Ancillary data: Zoning data |
Poor wall materials | SVI: Iron sheets, Wood-blocks, Plastic sheets, and Low-quality construction materials |
Dense area with lesser roads | Ancillary data: Road network data RSI Shape: Compactness |
Unplanned layout | RSI Shape: Compactness |
Unpaved/Light roads | Ancillary data: Road network data RSI Shape: Compactness |
Small building size/building footprint | Ancillary data: Building footprint data RSI Shape: Compactness |
Poor roof materials | RSI Tone: Iron sheets and Asbestos sheets SVI: Iron, Asbestos, and Plastic sheets |
Proximity to rivers, railroads, swamps, and shrines | RSI Association: Proximity to Rivers, Railroads, Swamps, and Shrines SVI: Proximity to Rivers, Railroads, Swamps, and Shrines |
Near to industrial and warehouse area | RSI Association: Near to the industrial and warehouse area Ancillary data: Zoning data |
Less open and green spaces | RSI Association: Less open and green spaces SVI: Less open and green spaces |
Characteristics | Value |
---|---|
Number of epochs | 300 2 |
Batch size | 64 |
Validation split | 0.30 |
Optimizer | Stochastic Gradient Descent (SDG) Learning rate: 1 × 10−5 Momentum: 0.9 |
Method | Input data | Integration | Precision | Recall | F1 Score | IoU |
---|---|---|---|---|---|---|
FCN-DK6 | RSI | - | 78.22 | 74.42 | 76.28 | 61.65 |
Places365-VGG16 | SVI | - | 66.66 | 76.75 | 71.35 | 55.46 |
FCN-DK6-i | RSI & SVI | Stacked | 77.38 | 75.04 | 76.19 | 61.54 |
Modified FCN-DK6_1 | RSI & SVI | Concatenated at Block 1 | 74.5 | 70,25 | 72.31 | 56.63 |
Modified FCN-DK6_2 | RSI & SVI | Concatenated at Block 2 | 77.07 | 77.93 | 77.50 | 63.26 |
Modified FCN-DK6_3 | RSI & SVI | Concatenated at Block 3 | 77.46 | 69.84 | 73.46 | 58.05 |
Modified FCN-DK6_4 | RSI & SVI | Concatenated at Block 4 | 80.23 | 63.35 | 70.8 | 54.8 |
Modified FCN-DK6_5 | RSI & SVI | Concatenated at Block 5 | 78.25 | 74.58 | 76.37 | 61.77 |
Cumulated | |||||||
---|---|---|---|---|---|---|---|
Predicted | Ground Truth | ||||||
Non-Slum | Heavy Slum | Medium Slum | Light Slum | Very Light Slum | Unknown Slum | Total | |
Non-slum | 3,337,202 | 28,475 | 200,990 | 230,783 | 127,138 | 248,024 | 4,172,612 |
Heavy slum | 877,730 | 33,521 | 3,827,388 | ||||
Medium slum | 550,343 | ||||||
Light slum | 1,153,302 | ||||||
Very light slum | 267,890 | ||||||
Unknown slum | 944,602 | ||||||
Total | 4,214,932 | 61,996 | 751,333 | 1,384,085 | 395,028 | 1,192,626 | 8,000,000 |
Recall (%) | 79.18 | 54.07 | 73.25 | 83.33 | 67.82 | 79.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najmi, A.; Gevaert, C.M.; Kohli, D.; Kuffer, M.; Pratomo, J. Integrating Remote Sensing and Street View Imagery for Mapping Slums. ISPRS Int. J. Geo-Inf. 2022, 11, 631. https://doi.org/10.3390/ijgi11120631
Najmi A, Gevaert CM, Kohli D, Kuffer M, Pratomo J. Integrating Remote Sensing and Street View Imagery for Mapping Slums. ISPRS International Journal of Geo-Information. 2022; 11(12):631. https://doi.org/10.3390/ijgi11120631
Chicago/Turabian StyleNajmi, Abbas, Caroline M. Gevaert, Divyani Kohli, Monika Kuffer, and Jati Pratomo. 2022. "Integrating Remote Sensing and Street View Imagery for Mapping Slums" ISPRS International Journal of Geo-Information 11, no. 12: 631. https://doi.org/10.3390/ijgi11120631
APA StyleNajmi, A., Gevaert, C. M., Kohli, D., Kuffer, M., & Pratomo, J. (2022). Integrating Remote Sensing and Street View Imagery for Mapping Slums. ISPRS International Journal of Geo-Information, 11(12), 631. https://doi.org/10.3390/ijgi11120631