Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region
Abstract
:1. Introduction
2. Data and Methods
2.1. Study Area of the Indian Ocean Region
2.2. Data
2.2.1. Data of the IOR Intra-Regional Trade Flows
2.2.2. Data of the Determinant Factors
Variable Types | Sub-Types | Network Ties | Data Source |
---|---|---|---|
Geographical factor | Macro-area geographical partitions | - | WDI |
Distance closeness | Inverse of the capital distances dij | Thurner et al. [58] | |
Contiguity | Binary value of 0,1 | COW [59] | |
Cultural factor | Civilization groups | - | Huntington [60] |
Common official language | Binary value of 0,1 | CEPII [61] | |
Regional organization membership | Regional organization membership | Numbers of major regional organizations any two countries join | COW [59] |
Economic condition | Economic size (GDP) | GDPi × GDPj/dij | WDI |
2.3. Methods
2.3.1. Measures of Intra-Regional Trade Integration
2.3.2. Community Structure Method
2.3.3. Community Comparison Method
3. Results
3.1. Extent of Integration of the IOR Intra-Regional Trade
3.2. Spatiotemporal Evolution of the Community Structures of the IOR Intra-Regional Trade
3.3. Impact of the Determinant Factors on the Community Structures of the IOR Intra-Regional Trade
4. Conclusions and Discussion
4.1. Conclusions
4.2. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Number | Regional Organization Name | Countries’ Names |
---|---|---|
1 | Association of South-East Asian Nations (ASEAN) | Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, the Philippines, Singapore, Thailand, and Vietnam |
2 | South Asian Association for Regional Cooperation (SAARC) | Bangladesh, Bhutan, India, Maldives, Nepal, Pakistan, and Sri Lanka |
3 | Indian Ocean Rim Association for Regional Cooperation (IOR-ARC) | Australia, Bangladesh, India, Indonesia, Iran, Kenya, Madagascar, Malaysia, Mauritius, Mozambique, Oman, Reunion, Singapore, Sri Lanka, South Africa, Tanzania, Thailand, and United Arab Emirates |
4 | Gulf Cooperation Council (GCC) | Bahrain, Kuwait, Oman, Qatar, Saudi Arabia, United Arab Emirates, and Yemen |
5 | League of Arab States (LAS) | Algeria, Bahrain, Egypt, Iraq, Lebanon, Sudan, Syria, Tunisia, and United Arab Emirates |
6 | Common Market for Eastern and Southern Africa (COMESA) | Angola, Burundi, Comoros, the Democratic Republic of Congo, Djibouti, Egypt, Eritrea, Ethiopia, Kenya, Madagascar, Malawi, Mauritius, Namibia, Rwanda, Seychelles, Sudan, Swaziland, Uganda, Tanzania, Zambia, and Zimbabwe |
7 | Southern African Development Community (SADC) | Angola, Botswana, the Democratic Republic of Congo, Lesotho, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, and Zimbabwe |
8 | Economic Cooperation Organization (ECO) | Afghanistan, Azerbaijan, Iran, Kazakhstan, Kyrgyzstan, Pakistan, Tajikistan, Turkey, Turkmenistan, and Uzbekistan |
References
- Boucharda, C.; Crumplina, W. Neglected no longer: The Indian Ocean at the forefront of world geopolitics and global geo-strategy. J. Indian Ocean. Reg. 2010, 6, 26–51. [Google Scholar] [CrossRef]
- Llewellyn, L.E.; English, S.; Barnwell, S. A roadmap to a sustainable Indian Ocean blue economy. J. Indian Ocean. Reg. 2016, 12, 52–66. [Google Scholar] [CrossRef]
- Yang, Y. The economic rationale behind the concept of “Indo-Pacific”. Glob. Rev. 2019, 11, 88–109. [Google Scholar] [CrossRef]
- Xia, L. Indo-Pacific strategy: Geopolitical and geo-economic perspectives. Am. Stud. Q. 2015, 29, 31–53. [Google Scholar]
- Li, Y.; Zhi, T. Economic development and evolution of geo-economic pattern of the “Indo-Pacific” region. AP. Econ. Rev. 2019, 5–13. [Google Scholar] [CrossRef]
- Van Rensburg, S.J.J.; Viviers, W.; Cameron, M.; Parry, A. Identifying export opportunities between IORA member states using the TRADE-DSM® methodology: A case study involving South Africa and Thailand. J. Indian Ocean. Reg. 2018, 15, 78–96. [Google Scholar] [CrossRef]
- Peron, O.; Rey, S. Trade and convergence of per capita income in the Indian Ocean Zone, 1950–2008. Ann. Reg. Sci. 2012, 49, 657–683. [Google Scholar] [CrossRef]
- O’Loughlin, J.; Anselin, L. Geo-Economic Competition and Trade Bloc Formation: United States, German, and Japanese Exports, 1968–1992. Econ. Geogr. 1996, 72, 131. [Google Scholar] [CrossRef]
- Marco, D.; Fagiolo, G. Modeling the international trade network: A gravity approach. J. Econ. Interact. Coord. 2013, 8, 155–178. [Google Scholar]
- Krugman, P. Growing world trade: Causes and consequences. Brook. Pap. Econ. Act. 1995, 26, 327–377. [Google Scholar] [CrossRef] [Green Version]
- Forbes, K. Are trade linkages important determinants of country vulnerability to crises? In Preventing Currency Crises in Emerging Markets; Sebastian, E., Jeffrey, F., Eds.; University of Chicago Press: Chicago, IL, USA, 2002. [Google Scholar]
- Artis, M.; Galvão, A.B.; Marcellino, M. The transmission mechanism in a changing world. J. Appl. Econ. 2007, 22, 39–61. [Google Scholar] [CrossRef] [Green Version]
- Cepeda-López, F.; Gamboa-Estrada, F.; León, C.; Rincon-Castro, H. The evolution of world trade from 1995 to 2014: A network approach. J. Int. Trade Econ. Dev. 2018, 4, 452–484. [Google Scholar]
- Wilhite, A. Blateral trade and ’small-world’ networks. Comput. Econ. 2001, 18, 49–64. [Google Scholar] [CrossRef]
- Kali, R.; Reyes, J. The architecture of globalization: A network approach to international economic integration. J. Int. Bus. Stud. 2007, 38, 595–620. [Google Scholar] [CrossRef]
- Fagiolo, G. The international-trade network: Gravity equations and topological properties. J. Econ. Interact. Coord. 2010, 5, 1–25. [Google Scholar] [CrossRef] [Green Version]
- De Benedictis, L.D.; Tajoli, L. The World Trade Network. World Econ. 2011, 34, 1417–1454. [Google Scholar] [CrossRef]
- Lovrić, M.; Da Re, R.; Vidale, E.; Pettenella, D.; Mavsar, R. Social network analysis as a tool for the analysis of international trade of wood and non-wood forest products. For. Policy Econ. 2018, 86, 45–66. [Google Scholar] [CrossRef]
- Wellman, B. Structural analysis: From method and metaphor to theory and substance. 19–61. In Social Structures a Network Approach; Wellman, B., Berkowitz, S.D., Eds.; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Berentsen, W.H. The Change in European Foreign Trade from 1960 to 2010: A Geography of Leading Merchandise Exporting Partners. Eurasian Geogr. Econ. 2012, 53, 380–399. [Google Scholar] [CrossRef]
- Calatayud, A.; Mangan, J.; Palacin, R. Connectivity to international markets: A multi-layered network approach. J. Transp. Geogr. 2017, 61, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Che, S.; Yang, Y. The trade network of the Belt and Road Initiative and its topological relationship to the global trade network. J. Geogr. Sci. 2018, 28, 1249–1262. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Xu, J.; Zhang, H. Competitiveness or Complementarity? A Dynamic Network Analysis of International Agri-Trade along the Belt and Road. Appl. Spat. Anal. Policy 2019, 13, 349–374. [Google Scholar] [CrossRef]
- Wang, Y.; Song, C.; Sigley, G.; Chen, X.; Yuan, L. Using Social Networks to Analyze the Spatiotemporal Patterns of the Rolling Stock Manufacturing Industry for Countries in the Belt and Road Initiative. ISPRS Int. J. Geo-Inf. 2020, 9, 431. [Google Scholar] [CrossRef]
- Ye, S.; Song, C.; Cheng, C.; Shen, S.; Gao, P.; Zhang, T.; Chen, X.; Wang, Y.; Wan, C. Digital Trade Feature Map: A New Method for Visualization and Analysis of Spatial Patterns in Bilateral Trade. ISPRS Int. J. Geo-Inf. 2020, 9, 363. [Google Scholar] [CrossRef]
- Kastner, S.L. When Do Conflicting Political Relations Affect International Trade? J. Confl. Resolut. 2007, 51, 664–688. [Google Scholar] [CrossRef]
- Ward, M.D.; Hoff, P.D. Analyzing dependencies in geo-economics and geo-politics. Confl. Manag. Peace 2012, 6, 133–160. [Google Scholar]
- Lupu, Y.; Traag, V.A. Trading Communities, the Networked Structure of International Relations and the Kantian Peace. SSRN Electron. J. 2011, 57, 1011–1042. [Google Scholar] [CrossRef] [Green Version]
- Abb, P.; Strüver, G. Regional linkages and global policy alignment: The case of China-Southeast Asia relations. In German Institute of Global and Area Studies; GIGA Working Papers, No. 268; German Institute of Global and Area Studies (GIGA): Hamburg, Germany, 2015. [Google Scholar]
- Smith, D.A.; White, D.R. Structure and dynamics of the global economy: Network analysis of international trade 1965–1980. Soc. Forces 1992, 70, 857–893. [Google Scholar] [CrossRef]
- Van, R.R. The world system paradigm as general theory of development: A cross-national test. Am. Sociol. Rev. 1996, 61, 508–527. [Google Scholar]
- Mahutga, C. The persistence of structural inequality? A network analysis of international trade, 1965–2000. Soc. Forces 2006, 84, 1863–1889. [Google Scholar] [CrossRef]
- Clark, R.; Beckfield, J. A New Trichotomous Measure of World-system Position Using the International Trade Network. Int. J. Comp. Sociol. 2009, 50, 5–38. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.; Wu, G.; Xu, H. Structure and formation of top networks in international trade, 2001–2010. Soc. Netw. 2016, 44, 9–21. [Google Scholar] [CrossRef]
- Baracuhy, B. The evolving geo-economics of world trade. Adelphi Ser. 2014, 54, 121–138. [Google Scholar] [CrossRef]
- Snyder, D.; Kick, E.L. Structural Position in the World System and Economic Growth, 1955–1970: A Multiple-Network Analysis of Transnational Interactions. Am. J. Sociol. 1979, 84, 1096–1126. [Google Scholar] [CrossRef]
- Magerman, G.; De Bruyne, K.; Van Hove, J. Pecking order and core-periphery in international trade. Rev. Int. Econ. 2020, 28, 1113–1141. [Google Scholar] [CrossRef]
- Serrano, M.Á.; Boguñá, M. Topology of the world trade web. Phys. Rev. E 2003, 68, 015101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garlaschelli, D.; Loffredo, M.I. Fitness-Dependent Topological Properties of the World Trade Web. Phys. Rev. Lett. 2004, 93, 188701. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharya, K.; Mukherjee, G.; Manna, S. The international trade network. In Econophysics of Markets and Business Networks; Chatterjee, A., Chakrabarti, B., Eds.; Springer: Milan, Italy, 2003. [Google Scholar]
- Garlaschelli, D.; Di Matteo, T.; Aste, T.; Caldarelli, G.; Loffredo, M.I. Interplay between topology and dynamics in the World Trade Web. Eur. Phys. J. B 2007, 57, 159–164. [Google Scholar] [CrossRef]
- Bhattacharya, K.; Mukherjee, G.; Saramaki, J.; Kaski, K.; Manna, S.S. The International Trade Network: Weighted network analysis and modelling. J. Stat. Mech. Theory Exp. 2008, 2008, P02002. [Google Scholar] [CrossRef]
- Fagiolo, G.; Reyes, J.; Schiavo, S. On the topological properties of the world trade web: A weighted network analysis. Phys. A 2008, 387, 3868–3873. [Google Scholar] [CrossRef] [Green Version]
- Fagiolo, G.; Reyes, J.; Schiavo, S. World-trade web: Topological properties, dynamics, and evolution. Phys. Rev. E 2009, 79, 036115. [Google Scholar] [CrossRef] [Green Version]
- Mao, M.; Cheng, X. Evolution analysis of foreign trade network structure based on complex network. In EBIMCS. Proceedings of the 2019 2nd International Conference on E-Business, Information Management and Computer Science, Kuala Lumpur, Malaysia; ACM: New York, NY, USA, 2019; Volume 26, pp. 1–5. [Google Scholar] [CrossRef]
- Barigozzi, M.; Fagiolo, G.; Mangioni, G. Identifying the community structure of the international-trade multi-network. Phys. A 2011, 390, 2051–2066. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Wang, T.; Chen, W. The rise of China and change of the global trade network during 1980–2018. Prog. Geogr. 2019, 38, 1596–1606. [Google Scholar] [CrossRef]
- Maeng, S.E.; Choi, H.W.; Lee, J.W. Complex Networks and Minimal Spanning Trees in International Trade Network. Int. J. Mod. Phys. Conf. 2012, 16, 51–60. [Google Scholar] [CrossRef]
- Krapohl, S.; Fink, S. Different Paths of Regional Integration: Trade Networks and Regional Institution-Building in Europe, Southeast Asia and Southern Africa. JCMS J. Common Mark. Stud. 2013, 51, 472–488. [Google Scholar] [CrossRef]
- Alatriste-Contreras, M.G. The relationship between the key sectors in the European Union economy and the intra-European Union trade. J. Econ. Struct. 2015, 4, 1170. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Du, D.; Liu, C.; Ma, Y. Study on the spatial-temporal evolution and internal mechanism of geo-economic connections of China. Acta Geogr. Sin. 2016, 71, 956–969. [Google Scholar]
- D’Odorico, P.; Carr, J.; Laio, F.; Ridolfi, L. Spatial organization and drivers of the virtual water trade: A community-structure analysis. Environ. Res. Lett. 2012, 7, 034007. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.; Wooster, R.; Shirrell, S. Regional trade agreements and the pattern of trade: A networks approach. World Econ. 2014, 37, 1128–1151. [Google Scholar] [CrossRef] [Green Version]
- Torreggiani, S.; Mangioni, G.; Puma, M.J.; Fagiolo, G. Identifying the community structure of the food-trade international multi-network. Environ. Res. Lett. 2018, 13, 054026. [Google Scholar] [CrossRef]
- Petridis, N.E.; Petridis, K.; Stiakakis, E. Global e-waste trade network analysis. Resour. Conserv. Recycl. 2020, 158, 104742. [Google Scholar] [CrossRef]
- Zhou, M. Multidimensionality and Gravity in Global Trade, 1950–2000. Soc. Forces 2010, 88, 1619–1643. [Google Scholar] [CrossRef]
- Zhou, M. Intensification of geo-cultural homophily in global trade: Evidence from the gravity model. Soc. Sci. Res. 2011, 40, 193–209. [Google Scholar] [CrossRef]
- Thurner, P.W.; Schmid, C.S.; Cranmer, S.J.; Kauermann, G. Network interdependencies and the evolution of the international arms trade. J. Confl. Resolut. 2018, 63, 1736–1764. [Google Scholar] [CrossRef]
- Stinnett, D.M.; Tir, J.; Diehl, P.F.; Schafer, P.; Gochman, C. The Correlates of War (Cow) Project Direct Contiguity Data, Version 3.0. Confl. Manag. Peace Sci. 2002, 19, 59–67. [Google Scholar] [CrossRef]
- Huntington, S.P. The Clash of Civilizations and the Remaking of the World Order; Simon & Schuster Ltd.: New York, NY, USA, 1996. [Google Scholar]
- Disdier, A.-C.; Mayer, T. Je t’aime, moi non plus: Bilateral opinions and international trade. Eur. J. Politics Econ. 2007, 23, 1140–1159. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Shin, E.-H. A Longitudinal Analysis of Globalization and Regionalization in International Trade: A Social Network Approach. Soc. Forces 2002, 81, 445–468. [Google Scholar] [CrossRef]
- Watts, D.J.; Strogatz, S.H. Collective dynamics of ‘small-world’ networks. Nature 1998, 393, 440–442. [Google Scholar] [CrossRef] [PubMed]
- O’Loughlin, J. Geo-Economic Competition in the Pacific Rim: The Political Geography of Japanese and US Exports, 1966–1988. Trans. Inst. Br. Geogr. 1993, 18, 438. [Google Scholar] [CrossRef]
- Masuda, N.; Konno, N. Return times of random walk on generalized random graphs. Phys. Rev. E 2004, 69, 066113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newman, M.E.J. Analysis of weighted networks. Phys. Rev. E 2004, 70, 056131. [Google Scholar] [CrossRef] [Green Version]
- Newman, M.E.J. Fast algorithm for detecting community structure in networks. Phys. Rev. E 2004, 69, 066133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blondel, V.D.; Guillaume, J.-L.; Lambiotte, R.; Lefebvre, E. Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008, 2008, P10008. [Google Scholar] [CrossRef] [Green Version]
- Lancichinetti, A.; Fortunato, S. Community detection algorithms: A comparative analysis. Phys. Rev. E 2009, 80, 056117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danon, L.; Díaz-Guilera, A.; Duch, J.; Arenas, A. Comparing community structure identification. J. Stat. Mech. Theory Exp. 2005, 2005, P09008. [Google Scholar] [CrossRef]
- Mesa-Arango, R.; Narayanan, B.; Ukkusuri, S.V. The impact of international crises on maritime transportation based global value chains. Netw. Spat. Econ. 2019, 19, 381–408. [Google Scholar] [CrossRef] [Green Version]
- Gokmen, G. Clash of civilizations and the impact of cultural differences on trade. J. Dev. Econ. 2017, 127, 449–458. [Google Scholar] [CrossRef]
- Leetaru, K.; Schrodt, P.A. GDELT: Global data on events, location, and tone, 1979–2012. In Annual Conference of the International Studies Association; The International Studies Association: San Diego, CA, USA, 29 March 2013. [Google Scholar]
- Davis, C.L.; Fuchs, A.; Johnson, K. State control and the effects of foreign relations on bilateral trade. J. Confl. Resout. 2017, 63, 405–438. [Google Scholar] [CrossRef]
- Chen, X.; Yuan, L.; Shen, S.; Liang, X.; Wang, Y.; Wang, X.; Ye, S.; Cheng, C.; Song, C. The analysis of geo-relationships among China and its neighboring countries. Acta Geogr. Sin. 2019, 74, 1534–1547. [Google Scholar] [CrossRef]
- Pang, X.; Liu, Z. China-U.S. in massive machine-coded event data: Influence of reciprocity, policy inertia, and a third power. World Econ. Politics 2019, 5, 53–79. [Google Scholar]
- Yuan, L.; Song, C.; Cheng, C.; Shen, S.; Chen, X.; Wang, Y. The cooperative and conflictual interactions between the United States, Russia, and China: A quantitative analysis of event data. J. Geogr. Sci. 2020, 30, 1702–1720. [Google Scholar] [CrossRef]
Sub-Region | Number of Countries | Country Names |
---|---|---|
East Asia and the Pacific | 7 | Indonesia (IDN), Myanmar (MMR), Malaysia (MYS), Singapore (SGP), Thailand (THA), Timor-Leste (TLS), Australia (AUS) |
South Asia | 8 | Afghanistan (AFG), Bangladesh (BGD), Bhutan (BTN), India (IND), Sri Lanka (LKA), Maldives (MDV), Nepal (NPL), Pakistan (PAK) |
The Middle East | 13 | Bahrain (BHR), United Arab Emirates (ARE), Iran (IRN), Iraq (IRQ), Israel (ISR), Jordan (JOR), Kuwait (KWT), Oman (OMN), Qatar (QAT), Saudi Arabia (SAU), Yemen (YEM), Egypt (EGY) |
Sub-Saharan Africa | 21 | Burundi (BDI), Botswana (BWA), Comoros (COM), Djibouti (DJI), Eritrea (ERI), Ethiopia (ETH), Kenya (KEN), Lesotho (LSO), Madagascar (MDG), Malawi (MWI), Mauritius (MUS), Mozambique (MOZ), Rwanda (RWA), Seychelles (SYC), Swaziland (SWZ), Sudan (SDN), Somalia (SOM), Tanzania (TZA), Uganda (UGA), South Africa (ZAF), Zambia (ZMB), Zimbabwe (ZWE) |
Year | Average Node Degree | Number of Ties | Network Density | Clustering Coefficient | Average Tie Strength (USD Million) | Total Intra-Regional Trade (USD Million) | Intra-Regional Trade Share (%) |
---|---|---|---|---|---|---|---|
1996 | 41 | 926 | 0.47 | 0.69 | 17.14 | 31,751.86 | 25.28 |
1997 | 48 | 1092 | 0.55 | 0.75 | 14.89 | 32,527.89 | 24.81 |
1998 | 49 | 1114 | 0.56 | 0.75 | 12.87 | 28,677.70 | 24.96 |
1999 | 52 | 1173 | 0.59 | 0.76 | 13.91 | 32,642.72 | 26.38 |
2000 | 59 | 1452 | 0.62 | 0.80 | 14.23 | 41,315.51 | 26.36 |
2001 | 60 | 1467 | 0.62 | 0.81 | 13.28 | 38,960.23 | 26.43 |
2002 | 62 | 1511 | 0.64 | 0.81 | 13.91 | 42,032.24 | 26.71 |
2003 | 64 | 1574 | 0.67 | 0.84 | 16.07 | 50,579.85 | 27.26 |
2004 | 66 | 1607 | 0.68 | 0.84 | 20.41 | 65,604.05 | 27.91 |
2005 | 65 | 1586 | 0.67 | 0.83 | 24.97 | 79,195.34 | 28.87 |
2006 | 66 | 1609 | 0.68 | 0.84 | 30.97 | 99,656.73 | 30.70 |
2007 | 67 | 1639 | 0.70 | 0.84 | 35.82 | 117,402.60 | 30.01 |
2008 | 68 | 1678 | 0.71 | 0.85 | 45.62 | 153,093.24 | 30.71 |
2009 | 67 | 1641 | 0.70 | 0.85 | 36.58 | 120,048.86 | 30.71 |
2010 | 72 | 1753 | 0.75 | 0.88 | 45.47 | 159,414.45 | 31.70 |
2011 | 71 | 1728 | 0.73 | 0.87 | 56.95 | 196,821.07 | 31.36 |
2012 | 69 | 1692 | 0.72 | 0.86 | 61.85 | 209,294.42 | 32.09 |
2013 | 72 | 1760 | 0.75 | 0.88 | 61.64 | 216,986.76 | 32.27 |
2014 | 70 | 1707 | 0.73 | 0.86 | 62.29 | 212,673.95 | 31.74 |
2015 | 70 | 1718 | 0.73 | 0.86 | 47.44 | 163,009.29 | 29.84 |
2016 | 68 | 1662 | 0.71 | 0.84 | 44.72 | 148,637.47 | 29.65 |
2017 | 65 | 1585 | 0.67 | 0.82 | 53.44 | 169,391.23 | 30.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, L.; Chen, X.; Song, C.; Cao, D.; Yi, H. Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region. ISPRS Int. J. Geo-Inf. 2021, 10, 214. https://doi.org/10.3390/ijgi10040214
Yuan L, Chen X, Song C, Cao D, Yi H. Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region. ISPRS International Journal of Geo-Information. 2021; 10(4):214. https://doi.org/10.3390/ijgi10040214
Chicago/Turabian StyleYuan, Lihua, Xiaoqiang Chen, Changqing Song, Danping Cao, and Hong Yi. 2021. "Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region" ISPRS International Journal of Geo-Information 10, no. 4: 214. https://doi.org/10.3390/ijgi10040214
APA StyleYuan, L., Chen, X., Song, C., Cao, D., & Yi, H. (2021). Spatiotemporal Evolution and Determinant Factors of the Intra-Regional Trade Community Structures of the Indian Ocean Region. ISPRS International Journal of Geo-Information, 10(4), 214. https://doi.org/10.3390/ijgi10040214