Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks
Abstract
:1. Introduction
- A novel classical–quantum model using modified ResNet34 architecture and a variational circuit were designed with selected learning parameters for both domains. MRI images are similar between clinical settings; therefore, this model is useful for accurate model training/testing.
- Secondly, a reasonable dataset size was trained and tested that is suggestive that the potential of quantum computing in the middle layer of deep neural networks was unlocked for dimensionality reduction.
- The third main contribution of this research is the implementation of transfer learning for classical–quantum hybrid networks consisting of MRI images, and their validation through different quantum packages including PennyLane default simulator, qiskit.aer, and qiskit.basicaer.
2. Materials and Methods
2.1. Classical Neural Networks
2.2. Quantum Variational Circuit
Algorithm 1. Quantum Variational Circuit. |
Data Input (D) . // Prepare test kernel into QRAM using Dataset (D) // Amplitude Q median estimation // Inner product over superposition . // Measurement to prepare using tangent kernel Output |
2.3. Hybrid Classical–Quantum Neural Network
2.4. Transfer Learning
- Fine-tuning: here, pre-trained models are loaded and used for training. This eliminates the burden of random initialization on the neural network.
- Feature extraction: like fine-tuning, the pre-trained model is loaded, and then the weight of all layers is frozen, except for the last layer, which is then used for training.
2.5. Dataset Description
2.6. Data Pre-Processing
3. Results and Analysis
3.1. Experiment #1
3.1.1. Alzheimer’s Detection Using Transfer Learning
3.1.2. Hyperparameters in Deep Learning
3.1.3. GoogleNet Model
3.1.4. ResNet Model
3.2. Experiment #2
3.2.1. Alzheimer’s Detection Using Quantum Transfer Learning
3.2.2. Quantum Transfer Learning Using PennyLane
3.2.3. Quantum Transfer Learning Using the PennyLane-Qiskit Plugin
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weidner, W.; Barbarino, S.P. The state of the art of dementia research: New frontiers. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2019, 6, 4–443. [Google Scholar]
- Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inform. 2018, 5, 2. [Google Scholar] [CrossRef] [PubMed]
- Bibi, N.; Sikandar, M.; Din, I.; Almogren, A.; Ali, S. IoMT-based automated detection and classification of leukemia using deep learning. J. Healthc. Eng. 2020, 2020, 6648574. [Google Scholar] [CrossRef] [PubMed]
- Almogren, A.; Mohiuddin, I.; Din, I.; Almajed, H.; Guizani, N. Ftm-iomt: Fuzzy-based trust management for preventing sybil attacks in internet of medical things. IEEE Internet Things J. 2020, 8, 4485–4497. [Google Scholar] [CrossRef]
- Khan, S.R.; Sikandar, M.; Almogren, A.; Din, I.; Guerrieri, A.; Fortino, G. IoMT-based computational approach for detecting brain tumor. Future Gener. Comput. Syst. 2020, 109, 360–367. [Google Scholar] [CrossRef]
- Almogren, A. An automated and intelligent Parkinson disease monitoring system using wearable computing and cloud technology. Clust. Comput. 2019, 22, 2309–2316. [Google Scholar] [CrossRef]
- Basaia, S.; Agosta, F.L. Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks. NeuroImage Clin. 2019, 21, 101645. [Google Scholar] [CrossRef]
- Tufail, A.B.; Ma, Y.K.; Kaabar, M.K.; Rehman, A.U.; Khan, R.; Cheikhrouhou, O. Classification of initial stages of Alzheimer’s disease through PET neuroimaging modality and deep learning: Quantifying the impact of image filtering approaches. Mathematics 2021, 9, 3101. [Google Scholar] [CrossRef]
- Venugopalan, J.; Tong, L.; Hassanzadeh, H.R.; Wang, M.D. Multimodal deep learning models for early detection of Alzheimer’s disease stage. Sci. Rep. 2021, 11, 3254. [Google Scholar] [CrossRef]
- Pan, D.; Zeng, A.; Jia, L.; Huang, L.; Frizzell, T.; Song, X. Early Detection of Alzheimer’s Disease Using Magnetic Resonance Imaging: A Novel Approach Combining Convolutional Neural Networks and Ensemble Learning. Front. Neurosci. 2020, 14, 259. [Google Scholar] [CrossRef]
- Luo, S.; Li, X.; Li, J. Automatic Alzheimer’s disease recognition from mri data using deep learning method. J. Appl. Math. Phys. 2017, 5, 1892–1898. [Google Scholar] [CrossRef] [Green Version]
- Billones, C.D.; Demetria, O. DemNet: A Convolutional Neural Network for the detection of Alzheimer’s Disease and Mild Cognitive Impairment. In Proceedings of the IEEE Region 10 Conference (TENCON), Singapore, 22–25 November 2016; IEEE: Piscataway, NJ, USA, 2017; Volume 11, pp. 3724–3727. [Google Scholar]
- Sarraf, S.; Tofighi, G. Classifcation of alzheimer’s disease using fmri data and deep learning cnns. arXiv 2016, arXiv:1603.08631. [Google Scholar]
- Kazemi, Y.; Houghten, S.K. A deep learning pipeline to classify different stages of Alzheimer’s disease from fMRI data. In Proceedings of the IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology, St. Louis, MO, USA, 30 May–2 June 2018; Volume 11, p. 8404980. [Google Scholar]
- Farhi, E.; Neven, H. Classification with quantum neural networks on near term processors. arXiv 2018, arXiv:1802.06002. [Google Scholar]
- Schuld, M.; Bocharov, A.; Krysta, M.S.; Wiebe, N. Circuit-centric quantum classifiers. Phys. Rev. A 2020, 101, 032308. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhou, R.G.; Xu, R. A quantum deep convolutional neural network for image recognition. Quantum Sci. Technol. 2020, 5, 044003. [Google Scholar] [CrossRef]
- Li, J.; Alam, M.; Sha, C.M. Drug discovery approaches using quantum machine learning. arXiv 2021, arXiv:2104.00746. [Google Scholar]
- Solenov, D. The Potential of Quantum Computing and Machine Learning to Advance Clinical Research and Change the Practice of Medicine. Mo. Med. 2018, 115, 463–467. [Google Scholar]
- Lu, Z.; Shen, P.; Deng, D. Markovian quantum neuroevolution for machine learning. Phys. Rev. Appl. 2021, 16, 044039. [Google Scholar] [CrossRef]
- Mathur, N.; Landman, J. Medical image classification via quantum neural networks. arXiv 2021, arXiv:2109.01831. [Google Scholar]
- Jamal, A.T.; Ishak, A.B.; Khalek, S.A. Tumor edge detection in mammography images using quantum and machine learning approaches. Neural Comput. Appl. 2021, 33, 7773–7784. [Google Scholar] [CrossRef]
- Duan, B. Quantum algorithm and quantum circuit for a-optimal projection: Dimensionality reduction. Phys. Rev. A 2019, 99, 032311. [Google Scholar] [CrossRef] [Green Version]
- Mogalapalli, H. Classical–Quantum Transfer Learning for Image Classification. SN Comput. Sci. 2022, 3, 20. [Google Scholar] [CrossRef]
- Alavi, A.; Akhoundi, H. Hybrid Classical-Quantum method for Diabetic Foot Ulcer Classification. arXiv 2021, arXiv:2110.02222. [Google Scholar]
- Zen, R.; Long, M.; Tan, R.; Hébert, F. Transfer learning for scalability of neural-network quantum states. Phys. Rev. E 2020, 101, 053301. [Google Scholar] [CrossRef]
- Killoran, N.; Thomas, R.B.; Arrazola, J.M.; Schuld, M.; Quesad, N.; Lloyd, S. Continuous-variable quantum neural networks. Phys. Rev. Res. 2019, 1, 033063. [Google Scholar] [CrossRef] [Green Version]
- Piat, S.; Usher, N.; Severini, S. Image classification with quantum pre-training and auto_encoders. Int. J. Quantum Inf. 2018, 16, 1840009. [Google Scholar] [CrossRef]
- Sadiq, M.T.; Yu, X.; Yuan, Z.; Fan, Z.; Rehman, A.U.; Li, G.; Xiao, G. Motor Imagery EEG Signals Classification Based on Mode Amplitude and Frequency Components Using Empirical Wavelet Transform. IEEE Access 2019, 7, 127678–127692. [Google Scholar] [CrossRef]
- Mari, A.; Thomas, R.B.; Izaac, J.; Schuld, M.; Killoran, N. Transfer learning in hybrid classical-quantum neural networks. Quantum 2020, 4, 340. [Google Scholar] [CrossRef]
- Marella, S.T.; Parisa, H.S.K. Introduction to Quantum Computing. 2020. Available online: Intechopen.com (accessed on 25 November 2021).
- Dubey, S. Alzheimer’s Dataset. 2020. Available online: https://www.kaggle.com/tourist55/alzheimers-dataset-4-class-of-images (accessed on 3 January 2022).
- Yessou, H.; Sumbul, G.; Demir, B. A comparative study of deep learning loss functions for multi-label remote sensing image classification. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Waikoloa, HI, USA, 26 September–2 October 2020; Volume 1109, pp. 1349–1352. [Google Scholar]
- Noman, S.M.; Arshad, J.; Zeeshan, M.; Rehman, A.U.; Haider, A.; Khurram, S.; Cheikhrouhou, O.; Hamam, H.; Shafiq, M. An Empirical Study on Diabetes Depression over Distress Evaluation using Diagnosis Statistical Manual and Chi-Square Method. Int. J. Environ. Res. Public Health 2021, 18, 3755. [Google Scholar] [CrossRef]
- Bergholm, V.; Izaac, J.; Schuld, M.; Gogolin, C. PennyLane: Automatic differentiation of hybrid quantum classical computations. arXiv 2018, arXiv:1811.04968. [Google Scholar]
- El-Aal, S.A.; Ghali, N.I. A proposed recognition system for Alzheimer’s disease based on deep learning and optimization algorithms. J. Southwest Jiaotong Univ. 2021, 56, 5. [Google Scholar] [CrossRef]
- Murugan, S.; Venkatesa, N.C.; Sumithra, M.G.; Gao, X.Z.; Elakkiya, B.; Akila, M.; Manoharan, S. DEMNET: A deep learning model for early diagnosis of alzheimer diseases and dementia from MRI images. IEEE Access 2021, 9, 90319–90329. [Google Scholar] [CrossRef]
- Akbari, H.; Sadiq, M.T.; Rehman, A.U.; Ghazvini, M.; Naqvi, R.A.; Payan, M.; Bagheri, H.; Bagheri, H. Depression recognition based on the reconstruction of phase space of EEG signals and geometrical features. Appl. Acoust. 2021, 179, 108078. [Google Scholar] [CrossRef]
- Ajagbe, S.A.; Amuda, A.K.; Oladipupo, M.A.; Afe, O. Multi-classification of Alzheimer disease on magnetic resonance images (MRI) using deep convolutional neural network (DCNN) approaches. Int. J. Adv. Comput. Res. 2021, 11, 51–60. [Google Scholar] [CrossRef]
- Guan, Z.; Kumar, R.; Fung, Y.R.; Wu, Y.; Fiterau, M. A Comprehensive Study of Alzheimer’s Disease Classification Using Convolutional Neural Networks. arXiv 2019, arXiv:1904.07950. [Google Scholar]
- Hussain, W.; Sadiq, M.T.; Siuly, S.; Rehman, A.U. Epileptic Seizure Detection Using 1 D-Convolutional Long Short-Term Memory Neural Networks. Appl. Acoust. 2021, 177, 107941. [Google Scholar] [CrossRef]
- Rehman, A.U.; Naqvi, R.A.; Rehman, A.; Paul, A.; Sadiq, M.T.; Hussain, D. A Trustworthy SIoT Aware Mechanism as an Enabler for Citizen Services in Smart Cities. Electronics 2020, 9, 918. [Google Scholar] [CrossRef]
- Yagis, E.; Citi, L.; Diciotti, S.; Marzi, C.; Atnafu, S.W. 3D Convolutional Neural Networks for Diagnosis of Alzheimer’s Disease via structural MRI. In Proceedings of the 2020 IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 65–70. [Google Scholar]
- Liu, M.; Cheng, D.; Wang, K.; Wang, Y. Multi-Modality Cascaded Convolutional Neural Networks for Alzheimer’s Disease Diagnosis. Neuroinformatics 2018, 16, 295–308. [Google Scholar] [CrossRef] [PubMed]
- Oommen, L.; Chandran, S.; Prathapan, V.L. Early detection of Alzheimer’s disease using deep learning techniques. Int. Res. J. Eng. Technol. 2020, 7. [Google Scholar] [CrossRef]
- Raees, M.; Thomas, V. Automated detection of Alzheimer’s Disease using Deep Learning in MRI. J. Phys. 2021, 1921, 012024. [Google Scholar]
Hyperparameters | Learning Rate | Optimization Algorithm | Loss Function | Epochs | Batch Size | Weight Decay |
---|---|---|---|---|---|---|
Value/Name | 10−4 | Adam Optimizer | Cross Entropy | 20 | 16 | 1 × 10−4 |
Model | Training Accuracy | Validation Accuracy | Testing Accuracy | Recall | Precision | F1-Score |
---|---|---|---|---|---|---|
GoogleNet | 0.97 | 0.97 | 0.89 | 0.92 | 0.89 | 0.87 |
Resnet34 | 1.00 | 0.98 | 0.92 | 0.94 | 0.92 | 0.92 |
Hyperparameters | Learning Rate | Loss Function | Optimization Algorithm | Epochs | Batch Size | Weight Decay | Quantum Depth | Quantum Delta |
---|---|---|---|---|---|---|---|---|
Value/Name | 10−4 | Cross Entropy | Adam Optimizer | 20 | 8 | 1 × 10−4 | 6 | 0.01 |
Model and Device | Training Accuracy | Validation Accuracy | Testing Accuracy | Precision | F1-Score | Recall |
---|---|---|---|---|---|---|
PennyLane default simulator with resnet34 | 0.99 | 0.98 | 0.97 | 0.88 | 0.86 | 0.85 |
qiskit.aer with resnet34 | 0.95 | 0.89 | 0.94 | 0.86 | 0.86 | 0.87 |
qiskit.basicaer with resnet34 | 0.98 | 0.97 | 0.95 | 0.91 | 0.87 | 0.94 |
Model and Device | Training Accuracy | Validation Accuracy | Testing Accuracy | Precision | F1-Score | Recall |
---|---|---|---|---|---|---|
Quantum transfer learning using unbalanced dataset | 0.99 | 0.98 | 0.93 | 0.90 | 0.87 | 0.88 |
Model | Test Accuracy |
---|---|
Classical model GoogleNet | 0.89 |
Classical model ResNet34 | 0.92 |
Quantum transfer learning model with PennyLane default simulator | 0.97 |
Quantum transfer learning model with qiskit.basicaer | 0.94 |
Quantum transfer learning model with qiskit.aer | 0.95 |
Quantum transfer learning model using unbalanced dataset | 0.93 |
Author | Dataset | Model | Accuracy | Task |
---|---|---|---|---|
[36] | MRI | PBPSO features-based ResNet101 and DenseNet201 | 87.3% and 94.8% | Multi classification |
[37] | MRI | DemNet | 95.23% | Multi classification |
[38] | MRI | LSTM | 94% | Binary classification |
[39] | MRI | DCNN | 71% | Multi classification |
VGG-16 | 77.04% | |||
VGG-19 | 77.66% | |||
[40] | MRI | 3D ResNet-18 | 88.5% | Binary classification |
[41] | MRI | Inception | 86% | Binary classification |
MobileNet | 82% | |||
BellCNN | 95% | |||
[42] | MRI | 3D CNN | 50.1% | Binary classification |
[43] | MRI | 3D VGG-16 | 73.4% | Binary classification |
[44] | MRI PET | 3D CNN | 84.97% 88.08% | Binary classification |
[45] | MRI | MobileNet | 85% | Binary classification |
[46] | MRI | VGG-19 | 90.02% | Binary classification |
Proposed Method | MRI | Hybrid classical–quantum convolutional neural network based on ResNet34 | 97% | Binary classification |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahwar, T.; Zafar, J.; Almogren, A.; Zafar, H.; Rehman, A.U.; Shafiq, M.; Hamam, H. Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks. Electronics 2022, 11, 721. https://doi.org/10.3390/electronics11050721
Shahwar T, Zafar J, Almogren A, Zafar H, Rehman AU, Shafiq M, Hamam H. Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks. Electronics. 2022; 11(5):721. https://doi.org/10.3390/electronics11050721
Chicago/Turabian StyleShahwar, Tayyaba, Junaid Zafar, Ahmad Almogren, Haroon Zafar, Ateeq Ur Rehman, Muhammad Shafiq, and Habib Hamam. 2022. "Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks" Electronics 11, no. 5: 721. https://doi.org/10.3390/electronics11050721
APA StyleShahwar, T., Zafar, J., Almogren, A., Zafar, H., Rehman, A. U., Shafiq, M., & Hamam, H. (2022). Automated Detection of Alzheimer’s via Hybrid Classical Quantum Neural Networks. Electronics, 11(5), 721. https://doi.org/10.3390/electronics11050721