Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions
Abstract
:1. Introduction
2. Materials and Mathematical Modeling
2.1. Membrane System
2.2. Equations for Fluxes and Concentration Polarization Conditions
2.3. Equations for the Concentration Rayleigh Number
2.4. Membrane Potential Equations for Concentration Polarization Conditions
2.5. Equations for the Thickness of the Concentration Boundary Layers
3. Results of Calculations and Discussion
3.1. Concentration Dependence of Membrane Potential
3.2. Hydrostatic Pressure Dependencies of Membrane Potential
3.3. Rayleigh Number Dependencies of Membrane Potential
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Symbols
volume flux (m s−1) | |
Jl, Jm, Jh | solute fluxes; (mol m−2s−1) |
Il, Is, Im, Ih | ionic currents (A) |
hydraulic conductivity coefficient (m−3N−1s−1) | |
reflection coefficient | |
electroosmotic permeability coefficient (NA−1) | |
solute permeability coefficient (mol N−1s−1) | |
γ | van’t Hoff coefficient |
R | gas constant (J mol−1K−1) |
T | absolute temperature (K) |
electrical conductivity (Ω−1m−2) | |
transfer number | |
valence | |
ion number | |
average concentration of the solution (mol m−3) | |
potential difference measured with two reversible electrodes (V) | |
, | transfer number of anions (a) and cations (c) in the membrane |
time (s) | |
and | concentration boundary layers |
δl, δh | thickness of the concentration boundary layers (m) |
δm | membrane thickness (m) |
mechanical pressure difference (Pa) | |
CBLs | concentration boundary layers |
g | acceleration due to the fact of gravity (m s−2) |
, | diffusion coefficients (m2s−1) |
, | the kinematic viscosity coefficients (m2s−1) |
, | solution concentrations at the boundaries of M/ and M/ (mol m−3) |
, | solution densities at the boundaries of M/ and M/ (kg m−3) |
, | solution concentrations beyond and (mol m−3) |
, | solution densities beyond and (kg m−3) |
References
- Batko, K.M.; Ślęzak, A.; Bajdur, W.M. The role of gravity in the evolution of the concentration field in the electrochemical membrane cell. Entropy 2020, 22, 680. [Google Scholar] [CrossRef]
- Lipton, B.H.; Bhaerman, S. Spontaneous Evolution–Our Positive Future and a Way to Get There from Here; Hay House Inc.: Carlsbad, CA, USA, 2018; ISBN 1401923127. [Google Scholar]
- Batko, K.M.; Ślęzak, A. Evaluation of the global S-entropy production in membrane transport of aqueous solutions of hydrochloric acid and ammonia. Entropy 2020, 22, 1021. [Google Scholar] [CrossRef]
- Ślęzak, A.; Ślęzak, I.H.; Ślęzak, K.M. Influence of the concentration boundary layers on membrane potential in a single-membrane system. Desalination 2005, 184, 113–123. [Google Scholar] [CrossRef]
- Bruinsma, R.; Aleksander, S. Theory of electrohydrodynamic instabilities in electrolytic cells. J. Chem. Phys. 1990, 92, 3074–3080. [Google Scholar] [CrossRef]
- Barry, P.H.; Diamond, J.M. Effects of unstirred layers on membrane phenomena. Physiol. Rev. 1984, 64, 763–872. [Google Scholar] [CrossRef]
- Dworecki, K.; Ślęzak, A.; Ornal-Wąsik, B.; Wąsik, S. Effect of hydrodynamic instabilities on solute transport in a membrane system. J. Membr. Sci. 2005, 265, 94–100. [Google Scholar] [CrossRef]
- Dworecki, K.; Wąsik, S.; Ślęzak, A. Temporal and spatial structure of the concentration boundary layers in membrane system. Physica A 2003, 326, 360–369. [Google Scholar] [CrossRef]
- Dworecki, K.; Ślęzak, A.; Ornal-Wąsik, B.; Wąsik, S. Evolution of concentration field in membrane system. J. Biochem. Biophys. Meth. 2005, 62, 153–162. [Google Scholar] [CrossRef]
- Ibanez, B.; Stamatilis, D.F.; Wessling, M. Role of membrane surface in concentration polarization at cation exchange membranes. J. Membr. Sci. 2004, 239, 119–128. [Google Scholar] [CrossRef]
- Kumar, P.; Rubinstein, S.M.; Rubinstein, I.; Zaltzman, B. Mechanisms of hydrodynamic instability in concentration polarization. Phys. Rev. Res. 2020, 2, 033365. [Google Scholar] [CrossRef]
- Manzanares, J.A.; Murphy, W.D.; Mafe, S.; Reiss, H. Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J. Phys. Chem. 1993, 97, 8524–8530. [Google Scholar] [CrossRef]
- Rubinstein, I.; Zaltaman, B. Electro-osmotically induced convection at a permselective membrane. Phys. Rev. E 2000, 62, 2238–2251. [Google Scholar] [CrossRef] [PubMed]
- Nikonenko, V.; Nebavsky, A.; Mareev, S.; Kovalenko, A.; Urtenov, M.; Pourcelly, G. Modelling of ion transport in electromembrane systems: Impact of membrane bulk and surface heterogeneity. Appl. Sci. 2019, 9, 25. [Google Scholar] [CrossRef] [Green Version]
- Ślęzak, A.; Dworecki, K.; Jasik-Ślęzak, J.; Wąsik, J. Method to determine the practical concentration Rayleigh number in isothermal passive membrane transport processes. Desalination 2004, 168, 397–412. [Google Scholar] [CrossRef]
- Ślęzak, A. A model equation for the gravielectric effect in electrochemical cells. Biophys. Chem. 1990, 38, 189–199. [Google Scholar] [CrossRef]
- Ślęzak, A. Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane. Biophys. Chem. 1989, 34, 91–102. [Google Scholar] [CrossRef]
- Rewak-Soroczynska, J.; Sobierajska, P.; Targonska, S.; Piecuch, A.; Grosman, L.; Rachuna, J.; Wasik, S.; Arabski, M.; Ogorek, R.; Wiglusz, R.J. New approach to antifungal activity of fluconazole incorporated into the porous 6-Anhydro-α-L-Galacto-β-D-Galactan structures modified with nanohydroxyapatite for chronic-wound treatments—in vitro evaluation. Int. J. Mol. Sci. 2021, 22, 3112. [Google Scholar] [CrossRef]
- Kargol, M. The graviosmotic hypothesis of xylem transport in plants. Gen. Physiol. Biophys. 1992, 11, 429–487. [Google Scholar]
- Moya, A.A. Uphill transport in improved reverse electrodialysis by removal of divalent cations in the dilute solution: A N ernst-Planck based study. J. Membr. Sci. 2020, 598, 117784. [Google Scholar] [CrossRef]
- Zabolotsky, V.I.; Achoh, A.R.; Lebedev, K.A.; Melnikov, S.S. Permselectivity of bilayered ion-exchange membranes in ternary electrolyte. J. Membr. Sci. 2020, 608, 18152. [Google Scholar] [CrossRef]
- Katchalsky, A.; Curran, P.F. Nonequilibrium Thermodynamics in Biophysics; Harvard University Press: Cambridge, MA, USA, 1965; ISBN 9780674494121. [Google Scholar]
- Kedem, O.; Katchalsky, A. Permeability of composite membranes. Part 1. Electric current, volume flow and solute flow through membranes. Trans. Faraday Soc. 1963, 59, 1918–1930. [Google Scholar] [CrossRef]
- Grzegorczyn, S.; Ślęzak, A. Kinetics of concentration boundary layers buildup in the system consisted of microbial cellulose biomembrane and electrolyte solutions. J. Membr. Sci. 2007, 304, 148–155. [Google Scholar] [CrossRef]
- Grzegorczyn, S.; Ślęzak, A.; Michalska-Małecka, K.; Ślęzak-Prochazka, I. Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient. J. Non.-Equilib. Thermodyn. 2012, 37, 77–98. [Google Scholar] [CrossRef]
- Grzegorczyn, S.; Ślęzak, A.; Przywara-Chowaniec, B. Concentration polarization phenomenon in the case of mechanical pressure difference on the membrane. J. Biol. Phys. 2017, 43, 225–238. [Google Scholar] [CrossRef] [Green Version]
- Klinkman, H.; Holtz, M.; Wilgerodt, W.; Wilke, G.; Schoenfelder, D. Nephrophan–Eine neue dialysemembranen. Z. Urol. Nephrol. 1969, 62, 285–292. [Google Scholar]
- Kargol, A. Modified Kedem-Katchalsky equations and their applications. J. Membr. Sci. 2000, 174, 43–53. [Google Scholar] [CrossRef]
- Grzegorczyn, S.; Jasik-Ślęzak, J.; Michalska-Małecka, K.; Ślęzak, A. Transport of non-electrolyte solutions through membrane with concentration polarization. Gen. Physiol. Biophys. 2008, 27, 315–321. [Google Scholar]
- Lebon, G.; Jou, D.; Casas-Vasquez, J. Understanding Non-Equilibrium Thermodynamics. Foundations, Applications, Frontiers; Springer: Berlin, Germany, 2008; ISBN 978-3-540-74252-4. [Google Scholar]
- Lohaus, T.; Herkenhoff, N.; Shankar, R.; Wessling, M. Feed flow patterns of combined Rayleigh-Bénard convection and membrane permeation. J. Membr. Sci. 2018, 549, 60–66. [Google Scholar] [CrossRef]
- Mbituyimana, B.; Liu, L.; Ye, W.; Ode Boni, B.O.; Zhang, K.; Chen, J.; Thomas, S.; Vasilievich, R.V.; Shi, Z.; Yang, G. Bacterial cellulose-based composites for biomedical and cosmetic applications: Research progress and existing products. Carbohydr. Polym. 2021, 273, 118565. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batko, K.M.; Ślęzak-Prochazka, I.; Ślęzak, A.; Bajdur, W.M.; Ščurek, R. Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions. Entropy 2022, 24, 138. https://doi.org/10.3390/e24010138
Batko KM, Ślęzak-Prochazka I, Ślęzak A, Bajdur WM, Ščurek R. Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions. Entropy. 2022; 24(1):138. https://doi.org/10.3390/e24010138
Chicago/Turabian StyleBatko, Kornelia M., Izabella Ślęzak-Prochazka, Andrzej Ślęzak, Wioletta M. Bajdur, and Radomir Ščurek. 2022. "Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions" Entropy 24, no. 1: 138. https://doi.org/10.3390/e24010138
APA StyleBatko, K. M., Ślęzak-Prochazka, I., Ślęzak, A., Bajdur, W. M., & Ščurek, R. (2022). Modelling of the Electrical Membrane Potential for Concentration Polarization Conditions. Entropy, 24(1), 138. https://doi.org/10.3390/e24010138