Artificial Intelligence in Dementia: A Bibliometric Study
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Collection and Preprocessing
2.4. Bibliometric Analysis
3. Results
3.1. Publication Output
3.2. Distribution of Source Journals
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Poly, T.N.; Islam, M.M.; Walther, B.A.; Lin, M.C.; Li, Y.-C.J. Artificial intelligence in diabetic retinopathy: Bibliometric analysis. Comput. Methods Programs Biomed. 2023, 231, 107358. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.W.; Yang, H.C.; Islam, M.M.; Nguyen, P.A.A.; Feng, Y.T.; Hou, Z.Y.; Huang, C.W.; Poly, T.N.; Li, Y.C.J. Predicting Hepatocellular Carcinoma with minimal features from electronic health records: Development of a deep learning model. JMIR Cancer 2021, 7, e19812. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Poly, T.N.; Walther, B.A.; Lin, M.-C.; Li, Y.-C. Artificial intelligence in gastric cancer: Identifying gastric cancer using endoscopic images with convolutional neural network. Cancers 2021, 13, 5253. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Poly, T.N.; Yang, H.-C.; Li, Y.-C. Deep into laboratory: An artificial intelligence approach to recommend laboratory tests. Diagnostics 2021, 11, 990. [Google Scholar] [CrossRef]
- Richardson, A.; Robbins, C.B.; Wisely, C.E.; Henao, R.; Grewal, D.S.; Fekrat, S. Artificial intelligence in dementia. Curr. Opin. Ophthalmol. 2022, 33, 425–431. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Bentley, B.L.; McDonnell, D.; Ahmad, J.; He, J.; Shi, F.; Takeuchi, K.; Cheshmehzangi, A.; da Veiga, C.P. 6G and Artificial Intelligence Technologies for Dementia Care: Literature Review and Practical Analysis. J. Med. Internet Res. 2022, 24, e30503. [Google Scholar] [CrossRef]
- Battineni, G.; Chintalapudi, N.; Hossain, M.A.; Losco, G.; Ruocco, C.; Sagaro, G.G.; Traini, E.; Nittari, G.; Amenta, F. Artificial Intelligence Models in the Diagnosis of Adult-Onset Dementia Disorders: A Review. Bioengineering 2022, 9, 370. [Google Scholar] [CrossRef]
- Ranson, J.M.; Bucholc, M.; Lyall, D.; Newby, D.; Winchester, L.; Oxtoby, N.P.; Veldsman, M.; Rittman, T.; Marzi, S.; Skene, N.; et al. Harnessing the potential of machine learning and artificial intelligence for dementia research. Brain Inform. 2023, 10, 6. [Google Scholar] [CrossRef]
- Birkenbihl, C.; Emon, M.A.; Vrooman, H.; Westwood, S.; Lovestone, S.; Hofmann-Apitius, M.; Fröhlich, H.; Alzheimer’s Disease Neuroimaging Initiative. Differences in cohort study data affect external validation of artificial intelligence models for predictive diagnostics of dementia-lessons for translation into clinical practice. EPMA J. 2020, 11, 367–376. [Google Scholar] [CrossRef]
- Moher, D.; Tsertsvadze, A.; Tricco, A.C.; Eccles, M.; Grimshaw, J.; Sampson, M.; Barrowman, N. A systematic review identified few methods and strategies describing when and how to update systematic reviews. J. Clin. Epidemiol. 2007, 60, 1095-e1–1095-e11. [Google Scholar] [CrossRef]
- Szajewska, H. Evidence-based medicine and clinical research: Both are needed, neither is perfect. Ann. Nutr. Metab. 2018, 72, 13–23. [Google Scholar] [CrossRef]
- Poly, T.N.; Islam, M.M.; Li, Y.-C.; Lin, M.-C.; Hsu, M.-H.; Wang, Y.-C. Metformin use is associated with decreased mortality in COVID-19 patients with diabetes: Evidence from retrospective studies and biological mechanism. J. Clin. Med. 2021, 10, 3507. [Google Scholar] [CrossRef]
- Huertas-Valdivia, I.; Ferrari, A.M.; Settembre-Blundo, D.; García-Muiña, F.E. Social life-cycle assessment: A review by bibliometric analysis. Sustainability 2020, 12, 6211. [Google Scholar] [CrossRef]
- Liu, Z.; Yin, Y.; Liu, W.; Dunford, M. Visualizing the intellectual structure and evolution of innovation systems research: A bibliometric analysis. Scientometrics 2015, 103, 135–158. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Falagas, M.E.; Pitsouni, E.I.; Malietzis, G.A.; Pappas, G. Comparison of PubMed, Scopus, web of science, and Google scholar: Strengths and weaknesses. FASEB J. 2008, 22, 338–342. [Google Scholar] [CrossRef]
- Wu, C.-C.; Huang, C.-W.; Wang, Y.-C.; Islam, M.; Kung, W.-M.; Weng, Y.-C.; Su, C.-H. mHealth Research for Weight Loss, Physical Activity, and Sedentary Behavior: Bibliometric Analysis. J. Med. Internet Res. 2022, 24, e35747. [Google Scholar] [CrossRef]
- Islam, M.; Poly, T.N.; Alsinglawi, B.; Lin, L.-F.; Chien, S.-C.; Liu, J.-C.; Jian, W.-S. Application of artificial intelligence in COVID-19 pandemic: Bibliometric analysis. Healthcare 2021, 9, 441. [Google Scholar] [CrossRef]
- Peng, C.; He, M.; Cutrona, S.L.; Kiefe, C.I.; Liu, F.; Wang, Z. Theme trends and knowledge structure on mobile health apps: Bibliometric analysis. JMIR Mhealth Uhealth 2020, 8, e18212. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Ford, E.; Milne, R.; Curlewis, K. Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2023, 13, e1492. [Google Scholar] [CrossRef]
- de la Fuente Garcia, S.; Ritchie, C.W.; Luz, S. Artificial intelligence, speech, and language processing approaches to monitoring Alzheimer’s disease: A systematic review. J. Alzheimer’s Dis. 2020, 78, 1547–1574. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Lawler, K.; Garg, S.; Bai, Q.; Alty, J. Applications of Artificial Intelligence to aid detection of dementia: A narrative review on current capabilities and future directions. arXiv 2021, arXiv:210414073. [Google Scholar]
- Eun, S.-J.; Kim, E.J.; Kim, J.Y. Development and Evaluation of an Artificial Intelligence–Based Cognitive Exercise Game: A Pilot Study. J. Environ. Public Health 2022, 2022, 4403976. [Google Scholar] [CrossRef] [PubMed]
- Vaportzis, E.; Martin, M.; Gow, A.J. A tablet for healthy ageing: The effect of a tablet computer training intervention on cognitive abilities in older adults. Am. J. Geriatr. Psychiatry 2017, 25, 841–851. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, T.; McClendon, M.J.; Smyth, K.A.; Lerner, A.J.; Friedland, R.P.; Larsen, J.D. Cognitive functioning in healthy aging: The role of reserve and lifestyle factors early in life. Gerontologist 2007, 47, 307–322. [Google Scholar] [CrossRef] [Green Version]
- Deary, I.J.; Corley, J.; Gow, A.J.; Harris, S.E.; Houlihan, L.M.; Marioni, R.E.; Penke, L.; Rafnsson, S.B.; Starr, J.M. Age-associated cognitive decline. Br. Med. Bull. 2009, 92, 135–152. [Google Scholar] [CrossRef]
- Jonker, C.; Geerlings, M.I.; Schmand, B. Are memory complaints predictive for dementia? A review of clinical and population-based studies. Int. J. Geriatr. Psychiatry 2000, 15, 983–991. [Google Scholar] [CrossRef]
- Nichols, E.; Steinmetz, J.D.; Vollset, S.E.; Fukutaki, K.; Chalek, J.; Abd-Allah, F.; Abdoli, A.; Abualhasan, A.; Abu-Gharbieh, E.; Akram, T.T.; et al. Estimation of the global prevalence of dementia in 2019 and forecasted prevalence in 2050: An analysis for the Global Burden of Disease Study 2019. Lancet Public Health 2022, 7, e105–e125. [Google Scholar] [CrossRef]
- Graham, S.A.; Lee, E.E.; Jeste, D.V.; Van Patten, R.; Twamley, E.W.; Nebeker, C.; Yamada, Y.; Kim, H.-C.; Depp, C.A. Artificial intelligence approaches to predicting and detecting cognitive decline in older adults: A conceptual review. Psychiatry Res. 2020, 284, 112732. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Yang, H.C.; Nguyen, P.A.; Poly, T.N.; Huang, C.W.; Kekade, S.; Khalfan, A.M.; Debnath, T.; Li, Y.C.J.; Abdul, S.S. Benzodiazepine use and risk of dementia in the elderly population: A systematic review and meta-analysis. Neuroepidemiology 2017, 47, 181–191. [Google Scholar] [CrossRef]
- Morley, J.; Floridi, L. NHS AI Lab: Why We Need to Be Ethically Mindful about AI for Healthcare. 2019. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3445421 (accessed on 15 May 2023).
- Islam, M.M.; Poly, T.N.; Walther, B.A.; Yang, H.C.; Li, Y.-C. Artificial intelligence in ophthalmology: A meta-analysis of deep learning models for retinal vessels segmentation. J. Clin. Med. 2020, 9, 1018. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.M.; Yang, H.-C.; Poly, T.N.; Li, Y.-C.J. Development of an artificial intelligence–based automated recommendation system for clinical laboratory tests: Retrospective analysis of the national health insurance database. JMIR Med. Inform. 2020, 8, e24163. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Garg, R.; Gupta, P. Challenges facing AI and Big data for Resource-poor Healthcare System. In Proceedings of the 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 4–6 August 2021; pp. 1426–1433. [Google Scholar]
- Gargouri, Y.; Hajjem, C.; Larivière, V.; Gingras, Y.; Carr, L.; Brody, T.; Harnad, S. Self-selected or mandated, open access increases citation impact for higher quality research. PLoS ONE 2010, 5, e13636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahamtan, I.; Safipour Afshar, A.; Ahamdzadeh, K. Factors affecting number of citations: A comprehensive review of the literature. Scientometrics 2016, 107, 1195–1225. [Google Scholar] [CrossRef]
- Merkin, A.; Krishnamurthi, R.; Medvedev, O.N. Machine learning, artificial intelligence and the prediction of dementia. Curr. Opin. Psychiatry 2022, 35, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Borchert, R.; Azevedo, T.; Badhwar, A.; Bernal, J.; Betts, M.; Bruffaerts, R.; Burkhart, M.C.; Dewachter, I.; Gellersen, H.M.; Low, A.; et al. Artificial intelligence for diagnosis and prognosis in neuroimaging for dementia; a systematic review. medRxiv 2021. [Google Scholar] [CrossRef]
- Tsoi, K.K.; Jia, P.; Dowling, N.M.; Titiner, J.R.; Wagner, M.; Capuano, A.W.; Donohue, M.C. Applications of artificial intelligence in dementia research. Camb. Prism. Precis. Med. 2023, 1, e9. [Google Scholar] [CrossRef]
Rank | Journal | Country | Category | Publication, n | Percentage of Article | Impact Factor in 2021 | 5-Year Impact Factor |
---|---|---|---|---|---|---|---|
1 | Journal of Alzheimer’s Disease | Netherlands | Neurosciences | 39 | 3.56 | 4.16 | 5.27 |
2 | Frontiers in Aging Neuroscience | Switzerland | Neurosciences | 38 | 3.47 | 5.70 | 6.22 |
3 | Scientific Reports | England | Multidisciplinary Science | 26 | 2.37 | 4.99 | 5.51 |
4 | PLoS ONE | USA | Multidisciplinary Science | 24 | 2.19 | 3.75 | 4.06 |
5 | IEEE Access | USA | Computer science, Information system | 15 | 1.37 | 3.47 | 3.75 |
6 | Frontiers in Neuroscience | Switzerland | Neurosciences | 12 | 1.09 | 5.15 | 5.58 |
7 | Alzheimer’s Research and Therapy | England | Neurosciences | 11 | 1.00 | 8.83 | 9.03 |
8 | Applied Sciences-Basel | Switzerland | Engineering, Multidisciplinary | 11 | 1.00 | 2.83 | 2.91 |
9 | Computers in Biology and Medicine | USA | Computer Science, Interdisciplinary Applications | 11 | 1.00 | 6.69 | 5.75 |
10 | Diagnostics | Switzerland | Medicine, General, Internal | 11 | 1.00 | 3.99 | 4.12 |
Rank | Country | Article | Frequency | SCP | MCP | MCP Ratio |
---|---|---|---|---|---|---|
1 | China | 214 | 0.19 | 152 | 62 | 0.29 |
2 | USA | 182 | 0.16 | 139 | 43 | 0.23 |
3 | India | 124 | 0.11 | 106 | 18 | 0.14 |
4 | Korea | 67 | 0.06 | 49 | 18 | 0.26 |
5 | United Kingdom | 59 | 0.05 | 31 | 28 | 0.47 |
6 | Spain | 54 | 0.04 | 45 | 9 | 0.16 |
7 | Italy | 52 | 0.04 | 31 | 21 | 0.40 |
8 | Japan | 36 | 0.03 | 28 | 8 | 0.22 |
9 | Canada | 30 | 0.02 | 21 | 9 | 0.30 |
10 | Saudi Arabia | 23 | 0.02 | 12 | 11 | 0.47 |
Rank | Institutions | Country | Publications, (Percent) |
---|---|---|---|
1 | Boston University | United States | 49 (4.47) |
2 | Columbia University | United States | 41 (3.74) |
3 | University of Granada | Spain | 36 (3.29) |
4 | Seoul National University | South Korea | 27 (2.49) |
5 | Washington University | United States | 27 (2.46) |
6 | University of Pennsylvania | United States | 25 (2.28) |
7 | Harvard Medical School | United States | 24 (2.19) |
8 | Yonsei University | South Korea | 23 (2.10) |
9 | Sungkyunkwan University | South Korea | 22 (2.01) |
10 | University of Calgary | Canada | 22 (2.01) |
Rank | Author | Article | Citations | H-Index | Affiliation |
---|---|---|---|---|---|
1 | Gorriz JM | 27 | 6094 | 41 | University of Granada |
2 | Ramirez J | 27 | 5783 | 42 | University of Granada |
3 | Salas-Gonzalez D | 17 | 2333 | 30 | University of Granada |
4 | Segovia F | 16 | 2084 | 25 | University of Granada |
5 | Li J | 13 | 90 | 5 | Nanjing Normal University |
6 | Wang L | 13 | 3050 | 27 | Northwestern University |
7 | Wang Y | 11 | 602 | 11 | Nanjing University |
8 | Lopez M | 10 | 1596 | 20 | University of Genoa |
9 | Alvarez I | 9 | 2199 | 28 | University of Granada |
10 | Chaves R | 9 | 1241 | 19 | Universidade de Sao Paulo |
Rank | Author | Journal | Title | Citation, n |
---|---|---|---|---|
1 | Moradi E et al., 2015 | Neuroimage | Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects | 402 |
2 | Liu SQ et al., 2015 | IEEE Transactions on Biomedical Engineering | Multimodal Neuroimaging Feature Learning for Multiclass Diagnosis of Alzheimer’s Disease | 301 |
3 | Ding Y et al., 2019 | Radiology | A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using F-18-FDG PET of the Brain | 252 |
4 | Shi J et al., 2018 | IEEE Journal of Biomedical and Health Informatics | Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer’s Disease | 234 |
5 | Ortiz A et al., 2016 | International Journal of Neural System | Ensembles of Deep Learning Architectures for the Early Diagnosis of the Alzheimer’s Disease | 213 |
6 | Jo T et al., 2016 | Frontiers in Aging Neuroscience | Deep Learning in Alzheimer’s Disease: Diagnostic Classification and Prognostic Prediction Using Neuroimaging Data | 194 |
7 | Liu MH et al., 2020 | Neuroimage | A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer’s disease | 188 |
8 | Spasov S et al., 2019 | Neuroimage | A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease | 169 |
9 | Taveer M et al., 2020 | ACM Transactions on Multimedia Computing Communications and Applications | Machine Learning Techniques for the Diagnosis of Alzheimer’s Disease: A Review | 117 |
10 | Ieracitano, C et al., 2020 | Neural Network | A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia | 116 |
Keywords | Frequency (Percentage) |
---|---|
Disease classification | |
Alzheimer’s disease | 513 (46.89) |
Dementia | 164 (14.99) |
Cognitive impairment | 105 (9.59) |
Model | |
Machine Learning | 297 (27.14) |
Deep Learning | 214 (19.56) |
Algorithms | |
Convolutional Neural Network | 54 (4.93) |
Support Vector Machine | 40 (3.65) |
Random Forest | 36 (3.29) |
Transfer Learning | 30 (2.74) |
Artificial Neural Network | 17 (1.55) |
Modality | |
Magnetic Resonance Imaging | 71 (6.48) |
Neuroimaging | 39 (3.56) |
Biomarkers | 21 (1.91) |
Positron Emission Tomography | 14 (1.27) |
ECG | 13 (1.18) |
Tasks | |
Classification | 73 (6.67) |
Diagnosis | 24 (2.19) |
Prediction | 16 (1.46) |
Segmentation | 10 (0.91) |
Early Detection | 9 (0.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Su, C.-H.; Islam, M.M.; Liao, M.-H. Artificial Intelligence in Dementia: A Bibliometric Study. Diagnostics 2023, 13, 2109. https://doi.org/10.3390/diagnostics13122109
Wu C-C, Su C-H, Islam MM, Liao M-H. Artificial Intelligence in Dementia: A Bibliometric Study. Diagnostics. 2023; 13(12):2109. https://doi.org/10.3390/diagnostics13122109
Chicago/Turabian StyleWu, Chieh-Chen, Chun-Hsien Su, Md. Mohaimenul Islam, and Mao-Hung Liao. 2023. "Artificial Intelligence in Dementia: A Bibliometric Study" Diagnostics 13, no. 12: 2109. https://doi.org/10.3390/diagnostics13122109
APA StyleWu, C.-C., Su, C.-H., Islam, M. M., & Liao, M.-H. (2023). Artificial Intelligence in Dementia: A Bibliometric Study. Diagnostics, 13(12), 2109. https://doi.org/10.3390/diagnostics13122109