Contemporary Business Analytics: An Overview
Abstract
:1. Introduction
2. Business Analytics
3. Four Types of Analytics
3.1. Descriptive Analytics
3.2. Predictive Analytics
3.3. Prescriptive Analytics
3.4. Discovery Analytics
4. The Three Pillars of Analytics
4.1. Visualization
4.2. Statistical Modeling
4.3. Machine Learning
5. Architectural Framework
5.1. Data Sources
5.2. Business Data Transformation
5.3. Platform and Tools
5.4. Business Analytics Applications
6. Methodology
- Robustness of analyses, queries, reports, and visualization
- Variety of insight
- Substantiveness of research question
- Demonstration of analytics application
- Some degree of integration among components
- Sophistication and complexity of analysis
- Reproducibility and replication of results/model
7. Challenges
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Raghupathi, W.; Raghupathi, V. An Overview of Health Analytics. J. Health Med. Inform. 2013, 4, 132. [Google Scholar] [CrossRef] [Green Version]
- Acito, F.; Khatri, V. Business analytics: Why now and what next? Bus. Horizons 2014, 57, 565–570. [Google Scholar] [CrossRef]
- Appelbaum, D.; Kogan, A.; Vasarhelyi, M.; Yan, Z. Impact of business analytics and enterprise systems on managerial accounting. Int. J. Account. Inf. Syst. 2017, 25, 29–44. [Google Scholar] [CrossRef]
- Davenport, T.H.; Bensoussan, B.E.; Fleisher, C.S. The Complete Guide to Business Analytics (Collection); Pearson: Boston, MA, USA, 2012. [Google Scholar]
- Krishnamoorthi, S.; Mathew, S.K. Business analytics and business value: A comparative case study. Inf. Manag. 2018, 55, 643–666. [Google Scholar] [CrossRef]
- Kunc, M.; O’brien, F.A. The role of business analytics in supporting strategy processes: Opportunities and limitations. J. Oper. Res. Soc. 2019, 70, 974–985. [Google Scholar] [CrossRef]
- Sharma, R.; Reynolds, P.; Scheepers, R.; Seddon, P.B.; Shanks, G. Business Analytics and Competitive Advantage: A Review and a Research Agenda. In Bridging the Socio-Technical Gap in DSS—Challenges for the Next; Respicaio, A., Adam, F., Phillips-Wren, G., Eds.; IOS Press: Amsterdam, The Netherlands, 2010; Volume 212, pp. 187–198. [Google Scholar]
- Sharma, R.; Mithas, S.; Kankanhalli, A. Transforming decision-making processes: A research agenda for under-standing the impact of business analytics on organizations. Eur. J. Inf. Syst. 2014, 23, 433–441. [Google Scholar] [CrossRef] [Green Version]
- Davenport, T.S.; DeLong, D.W.; Beers, M.W. Successful knowledge management projects. Sloan Manag. Rev. 1998, 39, 43–57. [Google Scholar]
- Martínez-Martínez, A.; Suárez, L.M.C.; Montero, R.S.; Del Arco, E.A. Knowledge management as a tool for improving business processes: An action research approach. J. Ind. Eng. Manag. 2018, 11, 276–289. [Google Scholar] [CrossRef] [Green Version]
- Martínez, A.M.; Navarro, J.G.C.; Garcia-Perez, A.; Moreno-Ponce, A. Environmental knowledge strategy: Driving success of the hospitality industry. Manag. Res. Rev. 2019, 42, 662–680. [Google Scholar] [CrossRef]
- Raghu, T.; Vinze, A. A business process context for Knowledge Management. Decis. Support Syst. 2007, 43, 1062–1079. [Google Scholar] [CrossRef]
- Bayrak, T. A Review of Business Analytics: A Business Enabler or another Passing Fad. Procedia Soc. Behav. Sci. 2015, 195, 230–239. [Google Scholar] [CrossRef] [Green Version]
- Delen, D.; Ram, S. Research challenges and opportunities in business analytics. J. Bus. Anal. 2018, 1, 2–12. [Google Scholar] [CrossRef]
- Gillon, K.; Aral, S.; Lin, C.Y.; Mithas, S.; Zozulia, M. Business analytics: Radical shift or incremental change? Commun. Assoc. Inf. Syst. 2014, 34, 13. [Google Scholar] [CrossRef]
- Hindle, G.; Kunc, M.; Mortensen, M.; Oztekin, A.; Vidgen, R. Business analytics: Defining the field and identifying a research agenda. Eur. J. Oper. Res. 2020, 281, 483–490. [Google Scholar] [CrossRef]
- Holsapple, C.; Lee-Post, A.; Pakath, R. A unified foundation for business analytics. Decis. Support Syst. 2014, 64, 130–141. [Google Scholar] [CrossRef]
- Camm, J.; Cochran, J.; Fry, M.; Ohlmann, J.; Anderson, D. Essentials of Business Analytics (Book Only); Nelson Education: Scarborough, ON, Canada, 2014. [Google Scholar]
- Evans, J.R. Business Analytics, 3rd ed.; Pearson: London, UK, 2019. [Google Scholar]
- Evans, J.R.; Lindner, C.H. Business analytics: The next frontier for decision sciences. Decis. Line 2012, 43, 4–6. [Google Scholar]
- Kumar, U.D. Business Analytics: The Science of Data-Driven Decision Making; Wiley: Hoboken, NJ, USA, 2017. [Google Scholar]
- Chaudhuri, S.; Dayal, U.; Narasayya, V. An overview of business intelligence technology. Commun. ACM 2011, 54, 88–98. [Google Scholar] [CrossRef]
- Laursen, G.H.; Thorlund, J. Business Analytics for Managers: Taking Business Intelligence beyond Reporting; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Seddon, P.B.; Constantinidis, D.; Tamm, T.; Dod, H. How does business analytics contribute to business value? Inf. Syst. J. 2017, 27, 237–269. [Google Scholar] [CrossRef]
- Shanks, G.; Bekmamedova, N. Achieving benefits with business analytics systems: An evolutionary process perspective. J. Decis. Syst. 2012, 21, 231–244. [Google Scholar] [CrossRef]
- Jalali, S.M.J.; Park, H.W. State of the art in business analytics: Themes and collaborations. Qual. Quant. 2018, 52, 627–633. [Google Scholar] [CrossRef]
- Kohavi, R.; Rothleder, N.J.; Simoudis, E. Emerging trends in business analytics. Commun. ACM 2002, 45, 45–48. [Google Scholar] [CrossRef]
- Power, D.J.; Heavin, C.; McDermott, J.; Daly, M. Defining business analytics: An empirical approach. J. Bus. Anal. 2018, 1, 40–53. [Google Scholar] [CrossRef] [Green Version]
- Schniederjans, M.J.; Schniederjans, D.G.; Starkey, C.M. Business Analytics Principles, Concepts, and Applications: What, Why, and How; Pearson Education: London, UK, 2014. [Google Scholar]
- Barga, R.; Fontama, V.; Tok, W.H.; Cabrera-Cordon, L. Predictive Analytics with Microsoft Azure Machine Learning; Apress: Berkeley, CA, USA, 2015; pp. 21–43. [Google Scholar]
- Cao, G.; Duan, Y.; Li, G. Linking Business Analytics to Decision Making Effectiveness: A Path Model Analysis. IEEE Trans. Eng. Manag. 2015, 62, 384–395. [Google Scholar] [CrossRef] [Green Version]
- Das, S. Computational Business Analytics; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Dill, J.; Earnshaw, R.; Kasik, D.; Vince, J.; Wong, P.C. (Eds.) Expanding the Frontiers of Visual Analytics and Visualization; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hoyt, R.E.; Snider, D.; Thompson, C.; Mantravadi, S. IBM Watson Analytics: Automating Visualization, Descriptive, and Predictive Statistics. JMIR Public Health Surveill. 2016, 2, e157. [Google Scholar] [CrossRef] [PubMed]
- Ohri, A. R for Business Analytics; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Shmueli, G.; Bruce, P.C.; Yahav, I.; Patel, N.R.; Lichtendahl, K.C., Jr. Data Mining for Business Analytics: Concepts, Tech-Niques, and Applications in R; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Tamm, T.; Seddon, P.; Shanks, G. Pathways to Value from Business Analytics. In Proceedings of the International Conference on Information Systems, Milano, Italy, 15–18 December 2013. [Google Scholar]
- Vidgen, R.; Shaw, S.; Grant, D.B. Management challenges in creating value from business analytics. Eur. J. Oper. Res. 2017, 261, 626–639. [Google Scholar] [CrossRef]
- Wixom, B.H.; Yen, B.; Relich, M. Maximizing value from business analytics. MIS Q. Exec. 2013, 12, 111–123. [Google Scholar]
- McKeon, C. How analytics can “role” over to improve performance. Bus. Perform. Manag. 2007, 13–16. [Google Scholar]
- Kaplan, R.S.; Norton, D.P. Using the balanced scorecard as a strategic management system. Harv. Bus. Rev. 1996, 74, 75–85. [Google Scholar]
- Raghupathi, W.; Raghupathi, V. An empirical study of chronic diseases in the United States: A visual analytics approach to public health. Int. J. Environ. Res. Public Health 2018, 15, 431. [Google Scholar] [CrossRef] [Green Version]
- Vanani, I.R.; Jalali, S.M.J. A comparative analysis of emerging scientific themes in business analytics. Int. J. Bus. Inf. Syst. 2018, 29, 183. [Google Scholar] [CrossRef]
- Schwartz, P.M. Privacy, Ethics, and Analytics. IEEE Secur. Priv. Mag. 2011, 9, 66–69. [Google Scholar] [CrossRef]
- Vidgen, R.; Hindle, G.; Randolph, I. Exploring the ethical implications of business analytics with a business ethics canvas. Eur. J. Oper. Res. 2020, 281, 491–501. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V. Big data analytics in healthcare: Promise and potential. Health Inf. Sci. Syst. 2014, 2, 3. [Google Scholar] [CrossRef]
- Raghupathi, W.; Raghupathi, V.; Kudyba, S. Big Data Analytics—Architectures, Implementation Methodology, and Tools; Informa UK Limited: London, UK, 2014; pp. 49–70. [Google Scholar]
- Chen, H.; Chiang, R.H.L.; Storey, V.C. Business Intelligence and Analytics: From Big Data to Big Impact. MIS Q. 2012, 36, 1165. [Google Scholar] [CrossRef]
- Loebbecke, C.; Picot, A. Reflections on societal and business model transformation arising from digitization and big data analytics: A research agenda. J. Strat. Inf. Syst. 2015, 24, 149–157. [Google Scholar] [CrossRef]
- Pappas, I.O.; Mikalef, P.; Giannakos, M.N.; Krogstie, J.; Lekakos, G. Big data and business analytics ecosystems: Paving the way towards digital transformation and sustainable societies. Inf. Syst. E-Bus. Manag. 2018, 16, 479–491. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.-J.; Lee, K.; Ahn, H. Predicting Corporate Financial Sustainability Using Novel Business Analytics. Sustainability 2018, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Dhar, V. Editorial—Big Data, Data Science, and Analytics: The Opportunity and Challenge for IS Research. Inf. Syst. Res. 2014, 25, 443–448. [Google Scholar] [CrossRef]
- Muntean, M. Business Intelligence Issues for Sustainability Projects. Sustainability 2018, 10, 335. [Google Scholar] [CrossRef] [Green Version]
Pillar/Analytic Task | Visualization | Statistical Modeling | Machine Learning |
---|---|---|---|
* Charting * Value of a picture * Visual storytelling * Scientific/cognitive BI tools (Tableau, Looker, Tibco, Qliksense, Alteryx, etc.) * Careful design | * Strict rules for modeling * Satisfy assumptions * Clean, clear data * Structured, quantitative data * More formal scientific method * R, statistical packages–SAS, SPSS, etc. | * Data-driven * Noisy/missing values data * Unstructured data–text, audio, video * Black box * Mathematical modeling/basis * Python, ML tools, libraries * AI, Deep Learning | |
Descriptive Analytics | * All charts to display historical data—variables, dimensions, measures | * Descriptive statistics (mean, median, mode, standard deviation, correlation matrix, anova, etc.) | * Word count, association * Co-occurrence * Row similarity * TF-IDF, LDA, etc. |
Predictive Analytics | * Scatter plot/trend line * Formula/calculations/ * Extrapolation | * ANOVA/Regression/Chi-square, etc. to predict grouping, dependent variable(s), non-parametric statistics etc. | * Clustering* Classification * Deep learning neural network models, etc. * Training/testing |
Prescriptive Analytics | * What-if analysis in charts * Impact analysis in charts * New variables * Insight | * Causal studies * Slope and intercept; recommend action * Impact study | * Artificial intelligence/deep learning models * Study consequences * Impact of outcomes/labels |
Discovery (Wisdom) Analytics | * Create new dimensions, measures, variables in charts | * Perceptual mapping, conjoint analysis * New product & services discovery * New metrics, variables, composites, ratios * Causal analysis | * Using artificial intelligence and deep learning models for creating new models, problem solving, new learning algorithms * Causal analysis |
Stage One | Concept Design
|
Stage Two | Proposal
|
Stage Three | Implementation
|
Stage Four | Presentation and Evaluation
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raghupathi, W.; Raghupathi, V. Contemporary Business Analytics: An Overview. Data 2021, 6, 86. https://doi.org/10.3390/data6080086
Raghupathi W, Raghupathi V. Contemporary Business Analytics: An Overview. Data. 2021; 6(8):86. https://doi.org/10.3390/data6080086
Chicago/Turabian StyleRaghupathi, Wullianallur, and Viju Raghupathi. 2021. "Contemporary Business Analytics: An Overview" Data 6, no. 8: 86. https://doi.org/10.3390/data6080086
APA StyleRaghupathi, W., & Raghupathi, V. (2021). Contemporary Business Analytics: An Overview. Data, 6(8), 86. https://doi.org/10.3390/data6080086