The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder
Abstract
:1. Introduction
2. Developmental Coordination Disorder
2.1. Conventional Treatment in DCD
2.2. Mental Imagery
2.3. Technology in DCD Rehabilitation
2.4. Virtual Reality and Augmented Reality in DCD Treatment
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adams, I.L.; Lust, J.M.; Wilson, P.H.; Steenbergen, B. Compromised motor control in children with DCD: A deficit in the in-ternal model?—A systematic review. Neurosci. Biobehav. Rev. 2014, 47, 225–244. [Google Scholar] [CrossRef]
- Hyde, C.; Wilmut, K.; Fuelscher, I.; Williams, J. Does implicit motor imagery ability predict reaching correction efficiency? A test of recent models of human motor control. J. Mot. Behav. 2013, 45, 259–269. [Google Scholar] [CrossRef] [PubMed]
- Fuelscher, I.; Williams, J.; Enticott, P.G.; Hyde, C. Reduced motor imagery efficiency is associated with online control difficulties in children with probable developmental coordination disorder. Res. Dev. Disabil. 2015, 45–46, 239–252. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Publishing: Arlington, VA, USA, 2013. [Google Scholar]
- American Psychiatric Association. DSM-IV TR Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Publishing: Washington, DC, USA, 2000. [Google Scholar]
- Vaivre-Douret, L. Developmental coordination disorders: State of art. Neurophysiol. Clin. 2014, 44, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Vaivre-Douret, L.; Lalanne, C.; Golse, B. Developmental Coordination Disorder, An Umbrella Term for Motor Impairments in Children: Nature and Co-Morbid Disorders. Front. Psychol. 2016, 7, 502. [Google Scholar] [CrossRef] [Green Version]
- Edwards, J.; Berube, M.; Erlandson, K.; Haug, S.; Johnstone, H.; Meagher, M.; Sarkodee-Adoo, S.; Zwicker, J.G. Developmental coordination disorder in school-aged children born very preterm and/or at very low birth weight: A systematic review. J. Dev. Behav. Pediatr. 2011, 32, 678–687. [Google Scholar] [CrossRef]
- Larsen, R.F.; Mortensen, L.H.; Martinusson, T.; Andersen, A.-M.N. Determinants of developmental coordination disorder in 7-year-old children: A study of children in the Danish National Birth Cohort. Dev. Med. Child Neurol. 2013, 55, 1016–1022. [Google Scholar] [CrossRef]
- Lingam, R.; Golding, J.; Jongmans, M.J.; Hunt, L.P.; Ellis, M.; Emond, A. The association between developmental coordination disorder and other developmental traits. Pediatrics 2010, 126, e1109–e1118. [Google Scholar] [CrossRef]
- Gabbard, C.; Bobbio, T. The inability to mentally represent action may be associated with performance deficits in children with developmental coordination disorder. Int. J. Neurosci. 2011, 121, 113–120. [Google Scholar] [CrossRef]
- Wilson, P.H.; Ruddock, S.; Smits-Engelsman, B.; Polatajko, H.; Blank, R. Understanding performance deficits in developmental coordination disorder: A meta-analysis of recent research. Dev. Med. Child Neurol. 2013, 55, 217–228. [Google Scholar] [CrossRef]
- Nobusako, S.; Sakai, A.; Tsujimoto, T.; Shuto, T.; Nishi, Y.; Asano, D.; Furukawa, E.; Zama, T.; Osumi, M.; Shimada, S.; et al. Deficits in Visuo-Motor Temporal Integration Impacts Manual Dexterity in Probable Developmental Coordination Disorder. Front. Neurol. 2018, 9, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, I.L.J.; Smits-Engelsman, B.; Lust, J.M.; Wilson, P.H.; Steenbergen, B. Feasibility of Motor Imagery Training for Children with Developmental Coordination Disorder—A Pilot Study. Front. Psychol. 2017, 8, 1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, P.H.; Adams, I.L.; Caeyenberghs, K.; Thomas, P.; Smits-Engelsman, B.; Steenbergen, B. Motor imagery training enhances motor skill in children with DCD: A replication study. Res. Dev. Disabil. 2016, 57, 54–62. [Google Scholar] [CrossRef]
- Buccino, G.; Arisi, D.; Gough, P.; Aprile, D.; Ferri, C.; Serotti, L.; Tiberti, A.; Fazzi, E. Improving upper limb motor functions through action observation treatment: A pilot study in children with cerebral palsy. Dev. Med. Child Neurol. 2012, 54, 822–828. [Google Scholar] [CrossRef]
- Marshall, B.; Wright, D.J.; Holmes, P.S.; Williams, J.; Wood, G. Combined action observation and motor imagery facilitates visuomotor adaptation in children with developmental coordination disorder. Res. Dev. Disabil. 2020, 98, 103570. [Google Scholar] [CrossRef]
- Hoyek, N.; Champely, S.; Collet, C.; Fargier, P.; Guillot, A. Is Mental Rotation Ability a Predictor of Success for Motor Performance? J. Cogn. Dev. 2014, 15, 495–505. [Google Scholar] [CrossRef]
- Risoli, A.; Antonietti, A. Il Corpo al Centro. Dalla Teoria alla Riabilitazione con il Metodo SaM, Edizioni Universitarie; LED: Milano, Italy, 2015. [Google Scholar]
- Nanay, B. Sensory Substitution and Multimodal Mental Imagery. Perception 2017, 46, 1014–1026. [Google Scholar] [CrossRef] [Green Version]
- Kosslyn, S.M.; Seger, C.; Pani, J.R.; Hillger, L.A. When is imagery used in everyday life? A diary study. J. Ment. Imag. 1990, 14, 131–152. [Google Scholar]
- Kosslyn, S.M.; Reiser, B.J.; Farah, M.J.; Fliegel, S.L. Generating visual images: Units and relations. J. Exp. Psychol. Gen. 1983, 112, 278–303. [Google Scholar] [CrossRef]
- Baddeley, A.D. Working Memory; Oxford University Press; Clarendon Press: Oxford, UK, 1986. [Google Scholar]
- Decety, J.; Jeannerod, M. Mentally simulated movements in virtual reality: Does Fitts’s law hold in motor imagery? Behav. Brain Res. 1995, 72, 127–134. [Google Scholar] [CrossRef]
- Kosslyn, S.M.; Pascual-Leone, A.; Felician, O.; Camposano, S.; Keenan, J.P.; Thompson, W.L.; Ganis, G.; Sukel, K.E.; Alpert, N.M. The role of area 17 in visual imagery: Convergent evidence from PET and rTMS. Science 1999, 284, 167–170. [Google Scholar] [CrossRef]
- Wilson, P.H. Practitioner review: Approaches to assessment and treatment of children with DCD: An evaluative review. J. Child Psychol. Psychiatry 2005, 46, 806–823. [Google Scholar] [CrossRef]
- Maresca, G.; Maggio, M.G.; De Luca, R.; Manuli, A.; Tonin, P.; Pignolo, L.; Calabrò, R.S. Tele-Neuro-Rehabilitation in Italy: State of the Art and Future Perspectives. Front. Neurol. 2020, 11, 563375. [Google Scholar] [CrossRef]
- Schmeler, M.R.; Schein, R.M.; McCue, M.; Betz, K. Telerehabilitation clinical and vocational applications for assistive technology: Research, opportunities, and challenges. Int. J. Telerehabil. 2009, 1, 59–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zampolini, M.; Todeschini, E.; Bernabeu Guitart, M.; Hermens, H.; Ilsbroukx, S.; Macellari, V.; Magni, R.; Rogante, M.; Scattareggia Marchese, S.; Vollenbroek, M.; et al. Tele-rehabilitation: Present and future. Ann. Ist. Super. Sanita 2008, 44, 125–134. [Google Scholar] [PubMed]
- Deutsch, J.E.; Westcott McCoy, S. Virtual Reality and Serious Games in Neurorehabilitation of Children and Adults: Prevention, Plasticity, and Participation. Pediatr. Phys. Ther. 2017, 29 (Suppl. 3), S23–S36. [Google Scholar] [CrossRef] [PubMed]
- Bonnechère, B.; Jansen, B.; Omelina, L.; Van Sint Jan, S. The use of commercial video games in rehabilitation: A systematic review. Int. J. Rehabil. Res. 2016, 39, 277–290. [Google Scholar] [CrossRef]
- Franceschini, S.; Gori, S.; Ruffino, M.; Viola, S.; Molteni, M.; Facoetti, A. Action video games make dyslexic children read better. Curr. Biol. 2013, 23, 462–466. [Google Scholar] [CrossRef] [Green Version]
- Clemenson, G.D.; Stark, C.E. Virtual Environmental Enrichment through Video Games Improves Hippocampal-Associated Memory. J. Neurosci. 2015, 35, 16116–16125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.T.; Daneault, J.F.; Nanglo, T.; Lee, H.; Kim, B.; Kim, Y.; Lee, S.I. Effectiveness of a Serious Game for Cognitive Training in Chronic Stroke Survivors with Mild-to-Moderate Cognitive Impairment: A Pilot Randomized Controlled Trial. Appl. Sci. 2020, 10, 6703. [Google Scholar] [CrossRef]
- Wilson, P.; Green, D.; Caeyenberghs, K.; Karen Steenbergen, B.; Duckworth, J. Integrating New Technologies into the Treatment of CP and DCD. Curr. Dev. Disord. Rep. 2016, 3, 138–151. [Google Scholar] [CrossRef]
- Ferguson, G.D.; Jelsma, D.; Jelsma, J.; Smits-Engelsman, B.C. The efficacy of two task-orientated interventions for children with Developmental Coordination Disorder: Neuromotor Task Training and Nintendo Wii Fit Training. Res. Dev. Disabil. 2013, 34, 2449–2461. [Google Scholar] [CrossRef]
- Hammond, J.; Jones, V.; Hill, E.L.; Green, D.; Male, I. An investigation of the impact of regular use of the Wii Fit to improve motor and psychosocial outcomes in children with movement difficulties: A pilot study. Child Care Health Dev. 2014, 40, 165–175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkenazi, T.; Weiss, P.L.; Orian, D.; Laufer, Y. Low-cost virtual reality intervention program for children with developmental coordination disorder: A pilot feasibility study. Pediatr. Phys. Ther. 2013, 25, 467–473. [Google Scholar] [CrossRef]
- Straker, L.; Howie, E.; Smith, A.; Jensen, L.; Piek, J.; Campbell, A. A crossover randomised and controlled trial of the impact of active video games on motor coordination and perceptions of physical ability in children at risk of Developmental Coordination Disorder. Hum. Mov. Sci. 2015, 42, 146–160. [Google Scholar] [CrossRef]
- Avila-Pesantez, D.; Vaca-Cardenas, L.; Rivera, L.A.; Zuniga, L.; Miriam Avila, L. ATHYNOS: Helping Children with Dyspraxia Through an Augmented Reality Serious Game. In Proceedings of the 2018 International Conference on eDemocracy & eGovernment (ICEDEG), Ambato, Ecuador, 4–6 April 2018; pp. 286–290. [Google Scholar]
- Pimentel, K.; Teixeira, K. Virtual Reality: Through the New Looking Glass; Windcrest/McGraw-Hill/TAB Books; Blue Ridge Summit: Franklin County, PA, USA, 1993. [Google Scholar]
- Azuma, R.T. A survey of augmented reality. Presence Teleoperators Virtual Environ. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Rose, F.D.; Brooks, B.M.; Rizzo, A.A. Virtual reality in brain damage rehabilitation: Review. Cyberpsychol. Behav. 2005, 8, 241–262, 263–271. [Google Scholar] [CrossRef]
- Corbetta, D.; Imeri, F.; Gatti, R. Rehabilitation that incorporates virtual reality is more effective than standard rehabilitation for improving walking speed, balance and mobility after stroke: A systematic review. J. Physiother. 2015, 61, 117–124. [Google Scholar] [CrossRef] [Green Version]
- Zanier, E.R.; Zoerle, T.; Di Lernia, D.; Riva, G. Virtual Reality for Traumatic Brain Injury. Front. Neurol. 2018, 9, 345. [Google Scholar] [CrossRef] [Green Version]
- Jack, D.; Boian, R.; Merians, A.S.; Tremaine, M.; Burdea, G.C.; Adamovich, S.V.; Recce, M.; Poizner, H. Virtual reality-enhanced stroke rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2001, 9, 308–318. [Google Scholar] [CrossRef]
- Lei, C.; Sunzi, K.; Dai, F.; Liu, X.; Wang, Y.; Zhang, B.; He, L.; Ju, M. Effects of virtual reality rehabilitation training on gait and balance in patients with Parkinson’s disease: A systematic review. PLoS ONE 2019, 14, e0224819. [Google Scholar] [CrossRef] [Green Version]
- Maggio, M.G.; Russo, M.; Cuzzola, M.F.; Destro, M.; La Rosa, G.; Molonia, F.; Bramanti, P.; Lombardo, G.; De Luca, R.; Calabrò, R.S. Virtual reality in multiple sclerosis rehabilitation: A review on cognitive and motor outcomes. J. Clin. Neurosci. 2019, 65, 106–111. [Google Scholar] [CrossRef]
- Yuan, S.N.V.; Ip, H.H.S. Using virtual reality to train emotional and social skills in children with autism spectrum disorder. Lond. J. Prim. Care 2018, 10, 110–112. [Google Scholar] [CrossRef]
- Bellani, M.; Fornasari, L.; Chittaro, L.; Brambilla, P. Virtual reality in autism: State of the art. Epidemiol. Psychiatr. Sci. 2011, 20, 235–238. [Google Scholar] [CrossRef]
- Crepaldi, M.; Colombo, V.; Mottura, S.; Baldassini, D.; Sacco, M.; Cancer, A.; Antonietti, A. Antonyms: A Computer Game to Improve Inhibitory Control of Impulsivity in Children with Attention Deficit/Hyperactivity Disorder (ADHD). Information 2020, 11, 230. [Google Scholar] [CrossRef] [Green Version]
- Crepaldi, M.; Colombo, V.; Mottura, S.; Baldassini, D.; Sacco, M.; Cancer, A.; Antonietti, A. The Use of a Serious Game to Assess Inhibition Mechanisms in Children. Front. Comput. Sci. 2020, 2, 34. [Google Scholar] [CrossRef]
- Bashiri, A.; Ghazisaeedi, M.; Shahmoradi, L. The opportunities of virtual reality in the rehabilitation of children with attention deficit hyperactivity disorder: A literature review. Korean J. Pediatr. 2017, 60, 337–343. [Google Scholar] [CrossRef]
- Shema-Shiratzky, S.; Brozgol, M.; Cornejo-Thumm, P.; Geva-Dayan, K.; Rotstein, M.; Leitner, Y.; Hausdorff, J.M.; Mirelman, A. Virtual reality training to enhance behavior and cognitive function among children with attention-deficit/hyperactivity disorder: Brief report. Dev. Neurorehabil. 2019, 22, 431–436. [Google Scholar] [CrossRef]
- Golomb, M.R.; McDonald, B.C.; Warden, S.J.; Yonkman, J.; Saykin, A.J.; Shirley, B.; Huber, M.; Rabin, B.; Abdelbaky, M.; Nwosu, M.E.; et al. In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 2010, 91, 1–8.e1. [Google Scholar] [CrossRef]
- Snider, L.; Majnemer, A.; Darsaklis, V. Virtual reality as a therapeutic modality for children with cerebral palsy. Dev. Neurorehabil. 2010, 13, 120–128. [Google Scholar] [CrossRef]
- Ravi, D.K.; Kumar, N.; Singhi, P. Effectiveness of virtual reality rehabilitation for children and adolescents with cerebral palsy: An updated evidence-based systematic review. Physiotherapy 2017, 103, 245–258. [Google Scholar] [CrossRef]
- Chen, Y.; Fanchiang, H.D.; Howard, A. Effectiveness of Virtual Reality in Children with Cerebral Palsy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Phys. Ther. 2018, 98, 63–77. [Google Scholar] [CrossRef]
- McClurg, P.A.; Chaillé, C. Computer games: Environments for developing spatial cognition? J. Educ. Comput. Res. 1987, 3, 95–111. [Google Scholar] [CrossRef]
- McComas, J.; Pivik, J.; Laflamme, M. Children’s transfer of spatial learning from virtual reality to real environments. CyberPsychol. Behav. 1998, 1, 121–128. [Google Scholar] [CrossRef]
- Blank, R.; Barnett, A.L.; Cairney, J.; Green, D.; Kirby, A.; Polatajko, H.; Rosenblum, S.; Smits-Engelsman, B.; Sugden, D.; Wilson, P.; et al. International clinical practice recommendations on the definition, diagnosis, assessment, intervention, and psychosocial aspects of developmental coordination disorder. Dev. Med. Child Neurol. 2019, 61, 242–285. [Google Scholar] [CrossRef]
- World Health Organization. International Classification of Functioning, Disability and Health: Children and Youth Version: ICF-CY; World Health Organization: Brussels, Belgium, 2007. [Google Scholar]
- Straker, L.M.; Campbell, A.C.; Jensen, L.M.; Metcalf, D.R.; Smith, A.J.; Abbott, R.A.; Pollock, C.M.; Piek, J.P. Rationale, design and methods for a randomised and controlled trial of the impact of virtual reality games on motor competence, physical activity, and mental health in children with developmental coordination disorder. BMC Public Health 2011, 11, 654. [Google Scholar] [CrossRef] [Green Version]
- EbrahimiSani, S.; Sohrabi, M.; Taheri, H.; Agdasi, M.T.; Amiri, S. Effects of virtual reality training intervention on predictive motor control of children with DCD—A randomized controlled trial. Res. Dev. Disabil. 2020, 107, 103768. [Google Scholar] [CrossRef]
- Hoffmann, T.C.; Glasziou, P.P.; Boutron, I.; Milne, R.; Perera, R.; Moher, D.; Altman, D.G.; Barbour, V.; Macdonald, H.; Johnston, M.; et al. Better reporting of interventions: Template for intervention description and replication (TIDieR) checklist and guide. BMJ 2014, 348, g1687. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lino, F.; Arcangeli, V.; Chieffo, D.P.R. The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder. Children 2021, 8, 270. https://doi.org/10.3390/children8040270
Lino F, Arcangeli V, Chieffo DPR. The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder. Children. 2021; 8(4):270. https://doi.org/10.3390/children8040270
Chicago/Turabian StyleLino, Federica, Valentina Arcangeli, and Daniela Pia Rosaria Chieffo. 2021. "The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder" Children 8, no. 4: 270. https://doi.org/10.3390/children8040270
APA StyleLino, F., Arcangeli, V., & Chieffo, D. P. R. (2021). The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder. Children, 8(4), 270. https://doi.org/10.3390/children8040270