Age- and Sex-Based Developmental Biomarkers in Eye Movements
Abstract
:1. Introduction
Background
2. Materials and Methods
2.1. Participants
2.2. Ethical Guidelines
2.3. Testers
2.4. Apparatus
2.5. Testing Procedure
2.6. Oculomotor Tasks
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hunfalvay, M.; Bolte, T.; Singh, A.; Greenstein, E.; Murray, N.P.; Carrick, F.R. Age-Based Developmental Biomarkers in Eye Movements: A Retrospective Analysis Using Machine Learning. Brain Sci. 2024, 14, 686. [Google Scholar] [CrossRef] [PubMed]
- Carrick, F.R.; Clark, J.F.; Pagnacco, G.; Antonucci, M.M.; Hankir, A.; Zaman, R.; Oggero, E. Head-Eye Vestibular Motion Therapy Affects the Mental and Physical Health of Severe Chronic Postconcussion Patients. Front. Neurol. 2017, 8, 414. [Google Scholar] [CrossRef] [PubMed]
- Carrick, F.R.; Hankir, A.; Zaman, R.; Antonucci, M.M.; Pagnacco, G.; Azzolino, S.; Oggero, E. Improvement of Saccadic Eye Movements after Head-Eye Vestibular Motion (HEVM) Therapy and Neuro-Psychiatric Considerations. Psychiatr. Danub. 2019, 31, 318–323. [Google Scholar] [PubMed]
- Carrick, F.R.; Pagnacco, G.; Hunfalvay, M.; Azzolino, S.; Oggero, E. Head Position and Posturography: A Novel Biomarker to Identify Concussion Sufferers. Brain Sci. 2020, 10, 1003. [Google Scholar] [CrossRef] [PubMed]
- Hunfalvay, M.; Murray, N.P.; Carrick, F.R. Fixation stability as a biomarker for differentiating mild traumatic brain injury from age matched controls in pediatrics. Brain Inj. 2021, 35, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Hunfalvay, M.; Murray, N.P.; Mani, R.; Carrick, F.R. Smooth Pursuit Eye Movements as a Biomarker for Mild Concussion within 7-Days of Injury. Brain Inj. 2021, 35, 1682–1689. [Google Scholar] [CrossRef] [PubMed]
- Hunfalvay, M.; Murray, N.P.; Roberts, C.M.; Tyagi, A.; Barclay, K.W.; Carrick, F.R. Oculomotor Behavior as a Biomarker for Differentiating Pediatric Patients with Mild Traumatic Brain Injury and Age Matched Controls. Front. Behav. Neurosci. 2020, 14, 581819. [Google Scholar] [CrossRef] [PubMed]
- Hunfalvay, M.; Roberts, C.M.; Murray, N.P.; Tyagi, A.; Barclay, K.W.; Bolte, T.; Kelly, H.; Carrick, F.R. Vertical smooth pursuit as a diagnostic marker of traumatic brain injury. Concussion 2020, 5, Cnc69. [Google Scholar] [CrossRef] [PubMed]
- Murray, N.P.; Hunfalvay, M.; Mesagno, C.; Trotter, B.; Monsma, E.V.; Greenstein, E.; Carrick, F.R. Eye Movement Differences in Contact Versus Non-Contact Olympic Athletes. J. Mot. Behav. 2024, 56, 752–759. [Google Scholar] [CrossRef] [PubMed]
- de Bonis, M.; Freixa i Baqué, E. Sex differences and eye movements. Neuropsychobiology 1983, 9, 13–15. [Google Scholar] [CrossRef]
- Mathew, J.; Masson, G.S.; Danion, F.R. Sex differences in visuomotor tracking. Sci. Rep. 2020, 10, 11863. [Google Scholar] [CrossRef]
- Harris, T.; Hagg, J.; Pletzer, B. Eye-Movements During Navigation in a Virtual Environment: Sex Differences and Relationship to Sex Hormones. Front. Neurosci. 2022, 16, 755393. [Google Scholar] [CrossRef]
- Alexander, G.M.; Son, T. Androgens and eye movements in women and men during a test of mental rotation ability. Horm. Behav. 2007, 52, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Vallabh Varsha Haria, R.; Mahdie Klim Al Zaidawi, S.; Maneth, S. Predicting Sex via Eye Movements. In HCI International 2022–Late Breaking Posters, Proceedings of the 24th International Conference on Human-Computer Interaction, HCII 2022, Virtual Event, 26 June–1 July 2022; Springer: Cham, Switzerland, 2022; pp. 91–100. [Google Scholar]
- Miyahira, A.; Morita, K.; Yamaguchi, H.; Nonaka, K.; Maeda, H. Sex differences of exploratory eye movements: A life span study. Life Sci. 2000, 68, 569–577. [Google Scholar] [CrossRef]
- Nishiura, S.; Nakashima, Y.; Mori, K.; Kodama, T.; Hirai, S.; Kurakake, T.; Egami, C.; Morita, K. A life span study of exploratory eye movements in healthy subjects: Sex differences and affective influences. Kurume Med. J. 2007, 54, 65–72. [Google Scholar] [CrossRef]
- Ma, W.; Zhang, M. The effects of age and sex on the incidence of multiple step saccades and corrective saccades. Front. Aging Neurosci. 2022, 14, 963557. [Google Scholar] [CrossRef]
- Andersen, N.E.; Dahmani, L.; Konishi, K.; Bohbot, V.D. Eye tracking, strategies, and sex differences in virtual navigation. Neurobiol. Learn. Mem. 2012, 97, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Miyahira, A.; Morita, K.; Yamaguchi, H.; Morita, Y.; Maeda, H. Sex differences and reproducibility in exploratory eye movements of normal subjects. Psychiatry Clin. Neurosci. 2000, 54, 31–36. [Google Scholar] [CrossRef]
- Takahashi, J.; Miura, K.; Morita, K.; Fujimoto, M.; Miyata, S.; Okazaki, K.; Matsumoto, J.; Hasegawa, N.; Hirano, Y.; Yamamori, H.; et al. Effects of age and sex on eye movement characteristics. Neuropsychopharmacol. Rep. 2021, 41, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Caballero, H.S. Examining the Effects of Eye-Tracking Strategies and Sex on Multitask Performance and Eye Movements During Sleep Deprivation. Ph.D. Thesis, Laurentian University of Sudbury, Sudbury, ON, Canada, 2016. [Google Scholar]
- Sammaknejad, N.; Pouretemad, H.; Eslahchi, C.; Salahirad, A.; Alinejad, A. Sex Classification Based on Eye Movements: A Processing Effect During Passive Face Viewing. Adv. Cogn. Psychol. 2017, 13, 232–240. [Google Scholar] [CrossRef]
- Bellmann, C.; Feely, M.; Crossland, M.D.; Kabanarou, S.A.; Rubin, G.S. Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. Ophthalmology 2004, 111, 2265–2270. [Google Scholar] [CrossRef]
- Shaikh, A.G.; Zee, D.S. Eye Movement Research in the Twenty-First Century-a Window to the Brain, Mind, and More. Cerebellum 2018, 17, 252–258. [Google Scholar] [CrossRef]
- Mao, Y.; He, Y.; Liu, L.; Chen, X. Disease Classification Based on Eye Movement Features With Decision Tree and Random Forest. Front. Neurosci. 2020, 14, 798. [Google Scholar] [CrossRef]
- Wadehn, F.; Weber, T.; Mack, D.J.; Heldt, T.; Loeliger, H.A. Model-Based Separation, Detection, and Classification of Eye Movements. IEEE Trans. Biomed. Eng. 2020, 67, 588–600. [Google Scholar] [CrossRef] [PubMed]
- Brien, D.C.; Riek, H.C.; Yep, R.; Huang, J.; Coe, B.; Areshenkoff, C.; Grimes, D.; Jog, M.; Lang, A.; Marras, C.; et al. Classification and staging of Parkinson’s disease using video-based eye tracking. Park. Relat. Disord. 2023, 110, 105316. [Google Scholar] [CrossRef] [PubMed]
- Frei, K. Abnormalities of smooth pursuit in Parkinson’s disease: A systematic review. Clin. Park. Relat. Disord. 2021, 4, 100085. [Google Scholar] [CrossRef] [PubMed]
- Mani, R.; Asper, L.; Khuu, S.K. Deficits in saccades and smooth-pursuit eye movements in adults with traumatic brain injury: A systematic review and meta-analysis. Brain Inj. 2018, 32, 1315–1336. [Google Scholar] [CrossRef]
- Murray, N.G.; Szekely, B.; Islas, A.; Munkasy, B.; Gore, R.; Berryhill, M.; Reed-Jones, R.J. Smooth Pursuit and Saccades after Sport-Related Concussion. J. Neurotrauma 2020, 37, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Wolf, A.; Ueda, K.; Hirano, Y. Recent updates of eye movement abnormalities in patients with schizophrenia: A scoping review. Psychiatry Clin. Neurosci. 2021, 75, 82–100. [Google Scholar] [CrossRef]
- Wolf, A.; Tripanpitak, K.; Umeda, S.; Otake-Matsuura, M. Eye-tracking paradigms for the assessment of mild cognitive impairment: A systematic review. Front. Psychol. 2023, 14, 1197567. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Li, R.; Bai, Q.; Alty, J. Multimodal learning of clinically accessible tests to aid diagnosis of neurodegenerative disorders: A scoping review. Health Inf. Sci. Syst. 2023, 11, 32. [Google Scholar] [CrossRef] [PubMed]
- Costanzo, E.; Lengyel, I.; Parravano, M.; Biagini, I.; Veldsman, M.; Badhwar, A.; Betts, M.; Cherubini, A.; Llewellyn, D.J.; Lourida, I.; et al. Ocular Biomarkers for Alzheimer Disease Dementia: An Umbrella Review of Systematic Reviews and Meta-analyses. JAMA Ophthalmol. 2023, 141, 84–91. [Google Scholar] [CrossRef] [PubMed]
- Opwonya, J.; Ku, B.; Lee, K.H.; Kim, J.I.; Kim, J.U. Eye movement changes as an indicator of mild cognitive impairment. Front. Neurosci. 2023, 17, 1171417. [Google Scholar] [CrossRef] [PubMed]
- Noyes, B.; Biorac, A.; Vazquez, G.; Khalid-Khan, S.; Munoz, D.; Booij, L. Eye-tracking in adult depression: Protocol for a systematic review and meta-analysis. BMJ Open 2023, 13, e069256. [Google Scholar] [CrossRef]
- Haering, S.; Seligowski, A.V.; Linnstaedt, S.D.; Michopoulos, V.; House, S.L.; Beaudoin, F.L.; An, X.; Neylan, T.C.; Clifford, G.D.; Germine, L.T.; et al. Disentangling sex differences in PTSD risk factors. Nat. Ment. Health 2024, 2, 605–615. [Google Scholar] [CrossRef]
- Alhammadi, S.M.; Hashem, L.A.; Abusbeih, Z.R.; Alzaabi, F.S.; Alnuaimi, S.N.; Jalabi, A.F.; Nair, S.C.; Carrick, F.R.; Abdulrahman, M. Predictors of Postpartum Depression in Dubai, a Rapidly Growing Multicultural Society in the United Arab Emirates. Psychiatr. Danub. 2017, 29, 313–322. [Google Scholar]
- Zhang, D.; Liu, X.; Xu, L.; Li, Y.; Xu, Y.; Xia, M.; Qian, Z.; Tang, Y.; Liu, Z.; Chen, T.; et al. Effective differentiation between depressed patients and controls using discriminative eye movement features. J. Affect. Disord. 2022, 307, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Freedman, E.G.; Foxe, J.J. Eye movements, sensorimotor adaptation and cerebellar-dependent learning in autism: Toward potential biomarkers and subphenotypes. Eur. J. Neurosci. 2018, 47, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Papagiannopoulou, E.A.; Chitty, K.M.; Hermens, D.F.; Hickie, I.B.; Lagopoulos, J. A systematic review and meta-analysis of eye-tracking studies in children with autism spectrum disorders. Soc. Neurosci. 2014, 9, 610–632. [Google Scholar] [CrossRef]
- Riddiford, J.A.; Enticott, P.G.; Lavale, A.; Gurvich, C. Gaze and social functioning associations in autism spectrum disorder: A systematic review and meta-analysis. Autism Res. 2022, 15, 1380–1446. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.G.; de Pablo, J.; Gaviria, A.M.; Sepúlveda, E.; Vilella, E. Smooth pursuit eye movements and schizophrenia: Literature review. Arch. Soc. Esp. Oftalmol. 2014, 89, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Morita, K.; Miura, K.; Fujimoto, M.; Yamamori, H.; Yasuda, Y.; Iwase, M.; Kasai, K.; Hashimoto, R. Eye movement as a biomarker of schizophrenia: Using an integrated eye movement score. Psychiatry Clin. Neurosci. 2017, 71, 104–114. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Yi, Z. A glimpse of sex differences in schizophrenia. Gen. Psychiatr. 2022, 35, e100823. [Google Scholar] [CrossRef] [PubMed]
Male | Female | |
---|---|---|
(n = 11,871) | (n = 11,686) | |
Age at Test Time | 28.7 ± 16.7 | 31.3 ± 18.0 |
Horizontal Saccade Targeting | 12.2 ± 6.5 | 11.1 ± 5.6 |
Horizontal Saccade Amplitude | 197.4 ± 19.2 | 197.3 ± 18.0 |
Horizontal Saccade Velocity Averaged | 54.2 ± 17.1 | 47.8 ± 13.6 |
Vertical Saccade Targeting | 12.1 ± 5.3 | 11.2 ± 4.6 |
Vertical Saccade Velocity Averaged | 53.3 ± 14.9 | 48.9 ± 13.5 |
Vertical Saccade Amplitude | 189.3 ± 20.8 | 189.8 ± 19.9 |
Horizontal Smooth Pursuit | 93.2 ± 4.5 | 92.6 ± 4.7 |
Circular Smooth Pursuit Variance | 13.8 ± 8.2 | 15.2 ± 8.3 |
Fixation Dispersion | 6.8 ± 3.7 | 6.8 ± 3.8 |
Vertical Smooth Pursuit | 95.8 ± 5.3 | 94.9 ± 5.7 |
Vertical Smooth Pursuit number of Saccades | 5.3 ± 4.1 | 6.8 ± 4.4 |
Horizontal Smooth Pursuit number of Saccades | 3.2 ± 3.0 | 3.9 ± 3.2 |
Horizontal Q Ratio | 2.3 ± 0.3 | 2.3 ± 0.3 |
Vertical Q Ratio | 2.4 ± 0.3 | 2.4 ± 0.3 |
Test Variable | Technical Definition and Measurement |
---|---|
Saccade Tests–Horizontal Amplitude | Average distance between consecutive turning points. Measured in millimeters (mm) |
Saccade Tests–Horizontal Velocity | Refers to the average velocity made by the saccades across the test time. Measured in degrees per second (dps) |
Saccade Tests–Vertical Amplitude | Average distance between consecutive turning points. Measured in millimeters (mm) |
Saccade Tests–Vertical Velocity | Refers to the average velocity made by the saccades across the test time. Measured in degrees per second (dps) |
Pursuit Tests–Horizontal saccade number | The total tally of saccades recorded during the pursuit. Measured as a count number |
Pursuit Tests–Horizontal smooth pursuit | Refers to % of time spent in SP with acceptable distance and speed; 100% is perfect. Measured as a percentage (%) |
Pursuit Tests–Vertical saccade number | The total tally of saccades recorded during the pursuit. Measured as a count number |
Pursuit Tests–Vertical smooth pursuit | Refers to % of time spent in SP with acceptable distance and speed; 100% is perfect. Measured as a percentage (%) |
Pursuit Tests–CircularVariability | Refers to the average variance from the ideal pathway. We look at variance in three segments of the pathway, middle, left/right or up/down |
FixationFixation Dispersion | Refers to the average variance from the ideal pathway. We look at variance in three segments of the pathway, middle, left/right or up/down |
MM | SDM | FM | SDF | t | p | d [95% CI] | |
---|---|---|---|---|---|---|---|
Horizontal Saccade Targeting | 12.2 | 6.5 | 11.1 | 5.6 | 14.66 | *** | 0.19 [0.17, 0.22] |
Horizontal Saccade Amplitude | 197.4 | 19.2 | 197.3 | 18.0 | 0.11 | 0.913 | 0.00 [−0.02, 0.03] |
Horizontal Saccade Velocity | 54.2 | 17.1 | 47.8 | 13.6 | 31.61 | *** | 0.41 [0.39, 0.44] |
Vertical Saccade Velocity | 53.3 | 14.9 | 48.9 | 13.5 | 23.58 | *** | 0.31 [0.28, 0.33] |
Vertical Saccade Amplitude | 189.3 | 20.8 | 189.8 | 19.9 | −1.59 | 0.111 | −0.02 [−0.05, 0.00] |
Horizontal Smooth Pursuit | 93.2 | 4.5 | 92.6 | 4.7 | 11.18 | *** | 0.15 [0.12, 0.17] |
Circular Smooth Pursuit Variance | 13.8 | 8.2 | 15.2 | 8.3 | −12.54 | *** | −0.16 [−0.19, −0.14] |
Fixation Dispersion | 6.8 | 3.7 | 6.8 | 3.8 | −0.49 | 0.623 | −0.01 [−0.03, 0.02] |
Vertical Smooth Pursuit | 95.8 | 5.3 | 94.9 | 5.7 | 12.70 | *** | 0.17 [0.14, 0.19] |
Vertical Smooth Pursuit number of Saccades | 5.3 | 4.1 | 6.8 | 4.4 | −27.80 | *** | −0.36 [−0.39, −0.34] |
Horizontal Smooth Pursuit number of Saccades | 3.2 | 3.0 | 3.9 | 3.2 | −17.46 | *** | −0.23 [−0.25, −0.20] |
Horizontal Q Ratio | 2.3 | 0.3 | 2.3 | 0.3 | 5.21 | *** | 0.07 [0.04, 0.09] |
Vertical Q Ratio | 2.4 | 0.3 | 2.4 | 0.3 | −1.11 | 0.266 | −0.01 [−0.04, 0.01] |
Male | Female | |
---|---|---|
Intercept | 20.86 *** [9.27, 32.45] | 7.18 [−5.24, 19.60] |
Horizontal Saccade Targeting | 0.23 *** [0.18, 0.28] | 0.32 *** [0.25, 0.38] |
Horizontal Saccade Amplitude | −0.03 ** [−0.05,−0.01] | 0.04 *** [0.02, 0.07] |
Horizontal Saccade Velocity | −0.14 *** [−0.16,−0.12] | −0.22 *** [−0.25, −0.18] |
Vertical Saccade Targeting | 0.10 ** [0.04, 0.17] | 0.06 [−0.02, 0.14] |
Vertical Saccade Velocity | −0.05 ** [−0.07, −0.02] | 0.00 [−0.03, 0.04] |
Vertical Saccade Amplitude | 0.15 *** [0.13, 0.16] | 0.11 *** [0.09, 0.13] |
Horizontal Smooth Pursuit | 0.00 [−0.06, 0.07] | 0.05 [−0.02, 0.12] |
Circular Smooth Pursuit Variance | −0.00 [−0.04, 0.03] | 0.11 *** [0.07, 0.15] |
Fixation Dispersion | −0.08 [−0.16, −0.00] | −0.34 *** [−0.42, −0.25] |
Vertical Smooth Pursuit | 0.05 [−0.02, 0.12] | 0.01 [−0.06, 0.09] |
Vertical Smooth Pursuit number of Saccades | −0.57 *** [−0.67, −0.48] | −0.21 *** [−0.31, −0.11] |
Horizontal Smooth Pursuit number of Saccades | 0.11 [−0.02, 0.23] | 0.21 *** [0.08, 0.34] |
Horizontal Q Ratio | −7.37 *** [−8.33, −6.42] | −4.85 *** [−5.93, −3.77] |
Vertical Q Ratio | 2.88 *** [1.95, 3.80] | 2.00 *** [0.97, 3.03] |
Number of Observations | 11,871 | 11,686 |
R-squared | 0.097 | 0.057 |
Adjusted R-squared | 0.096 | 0.056 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carrick, F.R.; Hunfalvay, M.; Bolte, T.; Azzolino, S.F.; Abdulrahman, M.; Hankir, A.; Antonucci, M.M.; Al-Rumaihi, N. Age- and Sex-Based Developmental Biomarkers in Eye Movements. Brain Sci. 2024, 14, 1288. https://doi.org/10.3390/brainsci14121288
Carrick FR, Hunfalvay M, Bolte T, Azzolino SF, Abdulrahman M, Hankir A, Antonucci MM, Al-Rumaihi N. Age- and Sex-Based Developmental Biomarkers in Eye Movements. Brain Sciences. 2024; 14(12):1288. https://doi.org/10.3390/brainsci14121288
Chicago/Turabian StyleCarrick, Frederick Robert, Melissa Hunfalvay, Takumi Bolte, Sergio F. Azzolino, Mahera Abdulrahman, Ahmed Hankir, Matthew M. Antonucci, and Nouf Al-Rumaihi. 2024. "Age- and Sex-Based Developmental Biomarkers in Eye Movements" Brain Sciences 14, no. 12: 1288. https://doi.org/10.3390/brainsci14121288
APA StyleCarrick, F. R., Hunfalvay, M., Bolte, T., Azzolino, S. F., Abdulrahman, M., Hankir, A., Antonucci, M. M., & Al-Rumaihi, N. (2024). Age- and Sex-Based Developmental Biomarkers in Eye Movements. Brain Sciences, 14(12), 1288. https://doi.org/10.3390/brainsci14121288