Operator Jensen’s Inequality for Operator Superquadratic Functions
Abstract
:1. Introduction
1.1. Superquadratic Functions
- (1)
- .
- (2)
- if f is differentiable and , then for all .
- (3)
- if for all , then f is convex and .
1.2. Operator Convexity and Jensen’s Inequality
- (1)
- f is operator convex on J and .
- (2)
- , for every and contraction , that is, .
- (3)
- , for all and with , .
- (4)
- , for every and projection P.
- (1)
- For each , is operator concave on .
- (2)
- The function is operator convex on .
2. Operator Superquadratic Function
- (1)
- .
- (2)
- if f is non-negative, then f is operator convex and .
On Bohr’s Inequality
- 1.
- If is a real superquadratic function, then we haveIn particular, for , , , we have
- 2.
- If is a real subquadratic function, then we haveIn particular, for , , , we have
3. Operator Jensen’s Inequality
- (1)
- f is an operator superquadratic function.
- (2)
- The inequality
- (3)
- The inequality
4. Jensen’s Trace Inequality
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abramovich, S.; Jameson, G.; Sinnamon, G. Refining Jensen’s inequality. Bull. Math. Soc. Sci. Math. Roumanie 2004, 47, 3–14. [Google Scholar]
- Abramovich, S.; Jamesion, G.; Sinnamon, G. Inequalities for averages of convex and superquadratic functions. J. Inequ. Pure Appl. Math. 2004, 2004. 5, 91. [Google Scholar]
- Abramovich, S. On superquadraticity. J. Math. Inequal. 2009, 3, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Abramovich, S.; Ivelić, S.; Pexcxarixcx, J. Improvement of Jensen-Steffensen’s inequality for superquadratic functions. Banach J. Math. Anal. 2010, 4, 146–158. [Google Scholar] [CrossRef]
- Olanipekun, P.O.; Mogbademu, A.A. Inequalities of the Jensen type for a new class of convex functions. Nonlinear Funct. Anal. Appl. 2015, 20, 645–658. [Google Scholar]
- Alomari, M.W.; Chesneau, C. On h-superquadratic functions. Afr. Mat. 2022, 33, 41. [Google Scholar] [CrossRef]
- Kraus, F. Über konvexe Matrixfunktionen. Math. Z. 1936, 41, 18–42. [Google Scholar] [CrossRef]
- Chansangiam, P. A Survey on Operator Monotonicity, Operator Convexity, and Operator Means. Internat J. Anal. 2015, 2015, 649839. [Google Scholar] [CrossRef] [Green Version]
- Bendat, J.; Sherman, S. Monotone and convex operator functions. Trans. Am. Math. Soc. 1955, 79, 58–71. [Google Scholar] [CrossRef]
- Bhatia, R. Matrix Analysis; Springer: New York, NY, USA, 1996. [Google Scholar]
- Furuta, T.; Mićixcx, J.; Pexcxarixcx, J.; Seo, Y. Mond-Pečarić Method in Operator Inequalities. In Inequalities for Bounded Selfadjoint Operators on a Hilbert Space; Element: Zagreb, Croatia, 2005. [Google Scholar]
- Hansen, F.; Pedersen, G.K. Jensen’s inequality for operators and Löwner’s theorem’. Math. Ann. 1982, 258, 229–241. [Google Scholar] [CrossRef]
- Krnić, M.; Lovrinčević, N.; Pečarić, J.; Perić, J. Superadditivity and Monotonicity of the Jensen-Type Functionals: New Methods for Improving the Jensen-Type Inequalities in Real and in Operator Cases; Element: Zagreb, Croatia, 2016. [Google Scholar]
- Ahmed, N.U. Output feedback min-max control problem for a class of uncertain linear stochastic systems on UMD Banach space. Nonlinear Funct. Anal. Appl. 2019, 24, 127–154. [Google Scholar]
- Agarwal, R.P.; Dragomir, S.S. A survey of Jensen type inequalities for functions of selfadjoint operators in Hilbert spaces. Comput. Math. Appl. 2010, 59, 3785–3812. [Google Scholar] [CrossRef]
- Barić, J.; Matković, A.; Pečarić, J. A variant of the Jensen–Mercer operator inequality for superquadratic functions. Math. Comput. Model. 2010, 51, 1230–1239. [Google Scholar] [CrossRef]
- Banić, S.; Pečarić, J.; Varošanec, S. Superquadratic functions and refinements of some classical inequalities. J. Korean Math. Soc. 2008, 45, 513–525. [Google Scholar] [CrossRef]
- Petz, D. A Survey of Certain Trace Inequalities, Functional Analysis and Operator Theory Center Publications; Institute of Mathematics, Polish Academy od Sciences: Warszawa, Poland, 1994; Volume 30. [Google Scholar]
- Kadison, R.V. A generalized Schwarz inequality and algebraic invariants for operator algebras. Ann. Math. 1952, 56, 494–503. [Google Scholar] [CrossRef]
- Davis, J.C. A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 1957, 8, 42–44. [Google Scholar] [CrossRef]
- Choi, M.D. A Schwarz inequality for positive linear maps on C*-algebras. Ill. J. Math. 1974, 18, 565–574. [Google Scholar] [CrossRef]
- Kian, M. Operator Jensen inequality for superquadratic functions. Linear Algebra Its Appl. 2014, 456, 82–87. [Google Scholar] [CrossRef]
- Kian, M.; Dragomir, S.S. Inequalities involving superquadratic functions and operators. Mediterr. J. Math. 2014, 11, 1205–1214. [Google Scholar] [CrossRef]
- Alomari, M.W. Operator Popoviciu’s inequality for superquadratic and convex functions of selfadjoint operators in Hilbert spaces. Adv. Pure Appl. Math. 2019, 10, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Hirzallah, O. Non-commutative operator Bohr inequality. J. Math. Anal. Appl. 2003, 282, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Abramovich, S.; Barić, J.; Pečarič, J. A new proof of an inequality of Bohr for Hilbert space operators. Linear Algebra Appl. 2009, 430, 1432–1435. [Google Scholar] [CrossRef] [Green Version]
- Hansen, F.; Pedersen, G.K. Jenssen’s operator inequality. Bull. Lond. Math. Soc. 2003, 35, 553–564. [Google Scholar] [CrossRef] [Green Version]
- Mond, B.; Pečarić, J.E. Convex inequalities in Hilbert space. Houst. J. Math. 1993, 19, 405–420. [Google Scholar]
- Araki, H.; Hansen, F. Jensen’s operator inequality for functions of several variables. Proc. Am. Math. Soc. 2000, 128, 2075–2084. [Google Scholar] [CrossRef]
- Stinespring, W.F. Positive functions on C*-algebras. Proc. Am. Math. Soc. 1955, 6, 211–216. [Google Scholar]
- Simon, B. Trace Ideals and Their Applications, 2nd ed.; American Mathematical Society: Providence, RI, USA, 2005. [Google Scholar]
- Horn, R.A.; Johnson, C.R. Matrix Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Lieb, E.H. Convex trace functions and the Wigner–Yanase–Dyson Conjecture. Adv. Math. 1973, 11, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Kian, M.; Alomari, M.W. Improvements of trace inequalities for convex functions. Ann. Funct. Anal. 2022, 13, 64. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alomari, M.W.; Chesneau, C.; Al-Khasawneh, A. Operator Jensen’s Inequality for Operator Superquadratic Functions. Axioms 2022, 11, 617. https://doi.org/10.3390/axioms11110617
Alomari MW, Chesneau C, Al-Khasawneh A. Operator Jensen’s Inequality for Operator Superquadratic Functions. Axioms. 2022; 11(11):617. https://doi.org/10.3390/axioms11110617
Chicago/Turabian StyleAlomari, Mohammad W., Christophe Chesneau, and Ahmad Al-Khasawneh. 2022. "Operator Jensen’s Inequality for Operator Superquadratic Functions" Axioms 11, no. 11: 617. https://doi.org/10.3390/axioms11110617
APA StyleAlomari, M. W., Chesneau, C., & Al-Khasawneh, A. (2022). Operator Jensen’s Inequality for Operator Superquadratic Functions. Axioms, 11(11), 617. https://doi.org/10.3390/axioms11110617