Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means
Abstract
:1. Introduction
2. Preliminaries
- Confluent Hypergeometric function
3. Refined Exponential Type Convexity and H–H Type Inequalities
Fractional Inequalities of H–H Type
4. Further Estimates on H–H Inequalities
5. Inequalities via Generalized R–L Fractional Integral Operator
6. Applications
6.1. Application to Probability Density Function
6.2. Application to Special Means
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Hermite–Hadamard | |
Riemann–Liouville |
References
- Özdemir, M.E.; Yildiz, C.; Akdemir, A.O.; Set, E. On some inequalities for s-convex functions and applications. J. Inequal. Appl. 2013, 333, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Rashid, S.; Tariq, M.; Wang, M.K. Novel refinements via n-polynomial harmonically s-type convex functions and applications in special functions. J. Funt. Spaces 2021, 2021, 6615948. [Google Scholar] [CrossRef]
- Xi, B.Y.; Qi, F. Some integral inequalities of Hermite–Hadamard type for convex functions with applications to means. J. Funct. Spaces Appl. 2012, 2012, 980438. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.M.; Chu, Y.M.; Zhang, X.Y. The Hermite–Hadamard type inequality of GA-convex functions and its applications. J. Inequal. Appl. 2010, 2010, 507560. [Google Scholar] [CrossRef] [Green Version]
- Butt, S.I.; Tariq, M.; Aslam, A.; Ahmad, H.; Nofel, T.A. Hermite–Hadamard type inequalities via generalized harmonic exponential convexity. J. Funct. Spaces 2021, 2021, 5533491. [Google Scholar] [CrossRef]
- Rafiq, A.; Mir, N.A.; Ahmad, F. Weighted Chebysev-Ostrowski type inequalities. Applied Math. Mech. 2007, 28, 901–906. [Google Scholar] [CrossRef]
- Khan, M.A.; Chu, Y.M.; Khan, T.U. Some new inequalities of Hermite–Hadamard type for s-convex functions with applications. Open Math. 2017, 15, 1414–1430. [Google Scholar] [CrossRef]
- Tariq, M.; Sahoo, S.K.; Nasir, J.; Awan, S.K. Some Ostrowski type integral inequalities using Hypergeometric Functions. J. Frac. Calc. Nonlinear Sys. 2021, 2, 24–41. [Google Scholar] [CrossRef]
- Hermite, C. Sur deux limites dune integrale define. Mathesis 1883, 3, 1–82. [Google Scholar]
- Hadamard, J. Étude sur les propriétés des fonctions entiéres en particulier d’une fonction considéréé par Riemann. J. Math. Pures. Appl. 1893, 58, 171–215. [Google Scholar]
- Niculescu, C.P.; Persson, L.E. Convex Functions and Their Applications; Springer: New York, NY, USA, 2006. [Google Scholar]
- Tunç, M.; Göv, E.; Şanal, Ü. On tgs-convex function and their inequalities. Facta Unive. Ser. Math. Inform. 2015, 30, 679–691. [Google Scholar]
- Sarikaya, M.Z.; Ertugral, F. On the generalized Hermite–Hadamard inequalities. Ann. Univ. Craiova Math. Comput. Sci. Ser. 2020, 47, 193–213. [Google Scholar]
- Toplu, T.; Kadakal, M.; İşcan, İ. n-Polynomial convexity and some related inequalities. AIMS Math. 2020, 5, 1304–1318. [Google Scholar] [CrossRef]
- Latif, M.A. New Hermite–Hadamard type integral inequalities for GA-convex functions with applications. Analysis 2014, 34, 379–389. [Google Scholar] [CrossRef]
- Han, J.; Mohammed, P.O.; Zeng, H. Generalized fractional integral inequalities of Hermite–Hadamard-type for a convex function. Open Math. 2020, 18, 794–806. [Google Scholar] [CrossRef]
- Pal, S.; Wong, T.K.L. Exponentially concave functions and a new information geometry. Ann. Probab. 2018, 46, 1070–1113. [Google Scholar] [CrossRef] [Green Version]
- Alirezaei, G.; Mathar, R. On exponentially concave functions and their impact in information theory. In Proceedings of the 2018 Information Theory and Applications Workshop (ITA), San Diego, CA, USA, 11–16 February 2018; pp. 1–10. [Google Scholar]
- Jakšetić, J.; Pecčarić, J. Exponential convexity method. J. Convex Anal. 2013, 20, 181–197. [Google Scholar]
- Dragomir, S.S.; Gomm, I. Some Hermite–Hadamard’s inequality functions whose exponentials are convex. Babes Bolyai Math. 2015, 60, 527–534. [Google Scholar]
- Awan, M.U.; Noor, M.A.; Noor, K.I. Hermite–Hadamard type inequalities for exponentially convex functions. Appl. Math. Inf. Sci. 2018, 12, 405–409. [Google Scholar] [CrossRef]
- Rashid, S.; Noor, M.A.; Noor, K.I. Inequalities pertaining fractional approach through exponentially convex functions. Fractal Fract. 2019, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Noor, M.A.; Noor, K.I. Some properties of exponentially preinvex functions. FACTA Universitat (NIS). Ser. Math. Inform. 2019, 34, 941–955. [Google Scholar] [CrossRef]
- Kadakal, M.; İşcan, İ. Exponential type convexity and some related inequalities. J. Inequal. Appl. 2020, 2020, 82. [Google Scholar] [CrossRef]
- Jung, C.Y.; Farid, G.; Yasmeen, H.; Lv, Y.P.; Pečarić, J. Refinements of some fractional integral inequalities for refined (α, h-m)-convex function. Adv. Differ. Equ. 2021, 2021, 391. [Google Scholar] [CrossRef]
- Lacroix, S.F. Traité du calcul différentiel et du calcul intégral; Chez JBM Duprat, Libraire pour les Mathématiques, quai des Augustins: Paris, France, 1797; Volume 1. [Google Scholar]
- Sarikaya, M.Z.; Set, E.; Yaldiz, H.; Başak, N. Hermite–Hadamard inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013, 57, 2403–2407. [Google Scholar] [CrossRef]
- Öğülmüs, H.; Sarikaya, M.Z. Hermite–Hadamard-Mercer type inequalities for fractional integrals. Filomat 2021, 35, 2425–2436. [Google Scholar] [CrossRef]
- Dragomir, S.S. Ostrowski type inequalities for Riemann–Liouville fractional integrals of absolutely continuous functions in terms of norms. RGMIA Res. Rep. Collect. 2017, 20, 49. [Google Scholar]
- Set, E.; Akdemir, A.O.; Özdemir, M.E. Simpson type integral inequalities for convex functions via Riemann–Liouville integrals. Filomat 2017, 31, 4415–4420. [Google Scholar] [CrossRef]
- Tariq, M.; Ahmad, H.; Sahoo, S.K.; Kashuri, A.; Nofal, T.A.; Hsu, C.H. Inequalities of Simpson-Mercer-type including Atangana-Baleanu fractional operators and their applications. AIMS Math. 2022, 7, 15159–15181. [Google Scholar] [CrossRef]
- Chen, H.; Katugampola, U.N. Hermite–Hadamard and Hermite–Hadamard–Fejér type inequalities for generalized fractional integrals. J. Math. Anal. Appl. 2017, 446, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Gürbüz, M.; Akdemir, A.O.; Rashid, S.; Set, E. Hermite–Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities. J. Inequl. Appl. 2020, 2020, 172. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Tariq, M.; Hamed, Y.S. New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator. Fractal Fract. 2022, 6, 171. [Google Scholar] [CrossRef]
- Liu, K.; Wang, J.; ORegan, D. On the Hermite–Hadamard type inequality for ψ-Riemann–Liouville fractional integrals via convex functions. J. Inequal Appl. 2019, 2019, 27. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, M.Z.; Yildirim, H. On Hermite–Hadamard type inequalities for Riemann–Liouville fractional integrals. Miskolc Math. Notes 2016, 17, 1049–1059. [Google Scholar] [CrossRef]
- Ozdemir, M.E.; Bayraktar, B. Several new integral inequalities via Riemann–Liouville fractional integral operators. Azerbaijan J. Math. 2019, 9, 2218–6816. [Google Scholar]
- Alzer, H. A superadditive property of Hadamard’s gamma function. Abh. Math. Semin. Univ. Hambg. 2009, 79, 11–23. [Google Scholar] [CrossRef]
- Qiang, X.; Farid, G.; Yussouf, M.; Khan, K.A.; Rahman, A.U. New generalized fractional versions of Hadamard and Fejer inequalities for harmonically convex functions. J. Inequal. Appl. 2020, 2020, 191. [Google Scholar] [CrossRef]
- Awan, M.U.; Talib, S.; Chu, Y.M.; Noor, M.A.; Noor, K.I. Some new refinements of Hermite–Hadamard-type inequalities involving-Riemann–Liouville fractional integrals and applications. Math. Probl. Eng. 2020, 2020, 3051920. [Google Scholar] [CrossRef] [Green Version]
- Mumcu, I.; Set, E.; Akdemir, A.O.; Jarad, F. New extensions of Hermite–Hadamard inequalities via generalized proportional fractional integral. Numer. Methods Partial Differ. Equ. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Zahra, M.; Ashraf, M.; Farid, G.; Nonlaopon, K. Some new kinds of fractional integral inequalities via refined-convex function. Math. Prob. Eng. 2021, 2021, 8331092. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Latif, M.A.; Alsalami, O.M.; Treanţă, S.; Sudsutad, W.; Kongson, J. Hermite–Hadamard, Fejér and Pachpatte-Type Integral Inequalities for Center-Radius Order Interval-Valued Preinvex Functions. Fractal Fract. 2022, 6, 506. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Baleanu, D.; Kodamasingh, B. Hermite–Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators. Int. J Comput. Intel. Syst. 2022, 15, 1–12. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Sahoo, S.K.; Mohammed, P.O.; Kodamasingh, B.; Hamed, Y.S. New Riemann–Liouville Fractional-Order Inclusions for Convex Functions via Interval-Valued Settings Associated with Pseudo-Order Relations. Fractal Fract. 2022, 6, 212. [Google Scholar] [CrossRef]
- Stojiljković, V.; Ramaswamy, R.; Ashour Abdelnaby, O.A.; Radenović, S. Riemann–Liouville Fractional Inclusions for Convex Functions Using Interval Valued Setting. Mathematics 2022, 10, 3491. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodamasingh, B.; Sahoo, S.K.; Shaikh, W.A.; Nonlaopon, K.; Ntouyas, S.K.; Tariq, M. Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means. Axioms 2022, 11, 602. https://doi.org/10.3390/axioms11110602
Kodamasingh B, Sahoo SK, Shaikh WA, Nonlaopon K, Ntouyas SK, Tariq M. Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means. Axioms. 2022; 11(11):602. https://doi.org/10.3390/axioms11110602
Chicago/Turabian StyleKodamasingh, Bibhakar, Soubhagya Kumar Sahoo, Wajid Ali Shaikh, Kamsing Nonlaopon, Sotiris K. Ntouyas, and Muhammad Tariq. 2022. "Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means" Axioms 11, no. 11: 602. https://doi.org/10.3390/axioms11110602
APA StyleKodamasingh, B., Sahoo, S. K., Shaikh, W. A., Nonlaopon, K., Ntouyas, S. K., & Tariq, M. (2022). Some New Integral Inequalities Involving Fractional Operator with Applications to Probability Density Functions and Special Means. Axioms, 11(11), 602. https://doi.org/10.3390/axioms11110602