Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China
Abstract
:1. Introduction
2. Methodology
2.1. Data Selection
2.2. Temporarily-Coherent Point Identification
2.3. Temporarily Coherent Point Co-registration
2.4. Temporarily-Coherent Point Network
2.5. Least Squares Model with Outlier Detector
3. Results and Discussions
3.1. The Density of Temporarily-Coherent Points
3.2. The Co-Registration of Temporarily-Coherent Points
3.3. Precision of the Results
3.4. Discussion
4. Conclusions
- (1)
- The results of the experiment have demonstrated the capability and precision of the TCPInSAR method in monitoring linear infrastructure. An average improvement in coherence of about 0.12 has been achieved by the TCP co-registration compared to the conventional globe co-registration. Up to three pixels of the differences can be found between the azimuth offsets derived from identified TCPs and evenly-distributed windows over the whole image, indicating that an un-neglected basis would be caused by the globe co-registration in the sea area. By assuming the TCPs on the island being stable, the RMS of the TCPInSAR-derived deformation rate is 1.2 mm/year, partly due to the single master used in the four interferograms. Since we only employed four PALSAR images with moderate resolution, this is acceptable precision in the monitoring of linear infrastructure.
- (2)
- Up to −1.2 cm cumulative LOS deformation (i.e., a −2.3 cm/year LOS deformation rate) has been detected in the cable-stayed section of the Donghai Bridge during January and July 2009. It is found that the deformation is highly relevant to the local temperature. This is expected since the longitudinal deformation of a bridge will be caused by the thermal expansion of the cable-stayed part. However, due to the great similarity between the direction of the pier-stayed part of the bridge and the azimuth direction of the used ascending PALSAR data, the longitudinal deformation is underestimated in this study. On the other hand, the detected ~1 cm/year deformation of the pier-stayed bridge can be constituted by the transversal deformation associated with the seasonal winds and the tide, as well as the vertical deformation associated with the foundation settlement. Although further investigation should be carried out with more SAR images and environmental materials, this study provides significant insights on the dynamics of the Donghai Bridge.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Massonnet, D.; Rossi, M.; Carmona, C.; Adragna, F.; Peltzer, G.; Feigl, K.L.; Rabaute, T. The displacement field of the Landers earthquake mapped by radar interferometry. Nature 1993, 364, 138–142. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Engelhardt, H.; Kamb, B.; Frolich, R.M. Satellite radar interferometry for monitoring ice sheet motion: Application to an Antarctic ice stream. Science 1993, 262, 1525–1530. [Google Scholar] [CrossRef] [PubMed]
- Wicks, C.; Thatcher, W.; Dzurisin, D. Migration of fluids beneath Yellowstone Caldera inferred from satellite radar interferometry. Science 1998, 282, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.L.; Liu, G.X.; Li, Z.W.; Chen, Y.Q. Ground subsidence montoring in Hong Kong with satellite SAR interferometry. Photogram. Eng. Remote Sens. 2004, 70, 1151–1156. [Google Scholar] [CrossRef]
- Lu, Z.; Kwoun, O.; Rykhus, R. Interferometric synthetic aperture radar (InSAR): Its past, present and future. Photogram. Eng. Remote Sens. 2007, 73, 217–221. [Google Scholar]
- Hu, J.; Ding, X.L.; Zhang, L.; Sun, Q.; Li, Z.W.; Zhu, J.J.; Lu, Z. Estimation of 3-D surface displacement based on InSAR and deformation modeling. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2007–2016. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Kampes, B.N.; Hanssen, R.F. Ambiguity resolution for permanent scatterer interferometry. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2446–2453. [Google Scholar] [CrossRef]
- Hooper, A.; Segall, P.; Zebker, H. Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcan Alcedo, Galapagos. J. Geophys. Res. 2007, 112, B07407. [Google Scholar] [CrossRef]
- Ferretti, A.; Fumagalli, A.; Novali, F.; Prati, C.; Rocca, F.; Rucci, A. A new algorithm for processing interferoemtric data-stacks: SqueeSAR. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3460–3470. [Google Scholar] [CrossRef]
- Hilley, G.; Burgmann, R.; Ferretti, A.; Novali, F.; Rocca, F. Dynamics of slow-moving landslides from permanent scatterer analysis. Science 2004, 304, 1952–1956. [Google Scholar] [CrossRef] [PubMed]
- Dixon, T.; Amelung, F.; Ferretti, A.; Rocca, F.; Novali, F.; Wdowinski, S. New Orleans subsidence and relation to flooding after Hurricane Katrina, as measured by space geodesy. Nature 2006, 441, 587–588. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Lin, H.; Jiang, L.; Chen, F.; Cheng, S. A study of ground deformation in the Guangzhou urban area with persistent scatterer interferometry. Sensors 2009, 9, 503–518. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Ding, X.L.; Li, Z.W.; Zhang, L.; Zhu, J.J.; Sun, Q.; Gao, G.J. Vertical and horizontal displacements of Los Angeles from InSAR and GPS time series analysis: Resolving tectonic and anthropogenic motions. J. Geodyn. 2016, 99, 27–38. [Google Scholar] [CrossRef]
- Hu, J.; Wang, Q.J.; Li, Z.W.; Zhao, R.; Sun, Q. Investigating the ground deformation and source model of the Yangbajing geothermal field in Tibet, china with the WLS InSAR technique. Remote Sens. 2016, 8, 191. [Google Scholar] [CrossRef]
- Aimaiti, Y.; Yamazaki, F.; Liu, W.; Kasimu, A. Monitoring of Land-surface deformation in the Karamay Oilfield, Xinjiang, China, Using SAR Interferometry. Appl. Sci. 2017, 7, 772. [Google Scholar] [CrossRef]
- Du, Y.N.; Feng, G.C.; Peng, X.; Li, Z.W. Subsidence evolution of the Leizhou Peninsula, China, Based on InSAR observation from 1992 to 2010. Appl. Sci. 2017, 7, 466. [Google Scholar] [CrossRef]
- Grenerczy, G.; Wegmüller, U. Persistent scatterer interferometry analysis of the embankment failure of a red mud reservoir using ENVISAT ASAR data. Nat. Hazards 2011, 59, 1047–1053. [Google Scholar] [CrossRef]
- Karila, K.; Karjalainen, M.; Hyyppä, J.; Koskinen, J.; Saaranen, V.; Rouhizinen, P. A comparison of precise leveling and persistent scatterer SAR interferometry for building subsidence rate measurement. ISPRS Int. J. Geo-Inf. 2013, 2, 797–816. [Google Scholar] [CrossRef]
- Bianchini, S.; Pratesi, F.; Nolesini, T.; Casagli, N. Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: The Volterra (Italy) case study. Remote Sens. 2015, 7, 4678–4701. [Google Scholar] [CrossRef]
- Yang, K.; Yan, L.; Huang, G.; Chen, C.; Wu, Z. Monitoring Building Deformation with InSAR: Experiments and Validation. Sensors 2016, 16, 2182. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Chen, F.L.; Jiang, L.M.; Zhao, Q.; Cheng, S.L. Preliminary research on large-scale man-made linear features deformation monitoring using multi-baseline differential SAR interferometry. J. Geo-Inf. Sci. 2010, 12, 718–725. (In Chinese) [Google Scholar]
- Sousa, J.J.; Bastos, L. Multi-temporal SAR interferometry reveals acceleration of bridge sinking before collapse. Nat. Hazards Earth Syst. Sci. 2013, 13. [Google Scholar] [CrossRef]
- Sousa, J.J.; Hlaváčová, I.; Bakoň, M.; Lazecký, M.; Patricio, G.; Guimaraes, P.; Ruiz, A.K.; Bastos, L.; Sousa, A.; Bento, R. Potential of multi-temporal InSAR techniques for bridges and dams monitoring. Procedia Technol. 2014, 16, 834–841. [Google Scholar] [CrossRef]
- Lazecký, M.; Rapant, P.; Perissin, D.; Bakoň, M. Deformations of highway over undermined Ostrava-Svinov area monitored by InSAR using limited set of SAR images. Procedia Technol. 2014, 16, 414–421. [Google Scholar] [CrossRef]
- Parcharidis, I.; Foumelis, M.; Benekos, G.; Kourkouli, P.; Stamatopoulos, C.; Stramondo, S. Time series synthetic aperture radar interferometry over the multispan cable-stayed Rio-Antirio Bridge (central Greece): Achievements and constraints. J. Appl. Remote Sens. 2015, 9, 096082. [Google Scholar] [CrossRef]
- Fornaro, G.; Reale, D.; Verde, S. Bridge thermal dilation monitoring with millimeter sensitivity via multidimensional SAR imaging. IEEE Geosci. Remote Sens. Lett. 2013, 10, 677–681. [Google Scholar] [CrossRef]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Luzi, G.; Crippa, B. Measuring thermal expansion using X-band persistent scatterer interferometry. ISPRS J. Photogram. Remote Sens. 2015, 100, 84–91. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.L.; Lu, Z. Ground settlement monitoring based on temporarily coherent points between two SAR acquisitions. ISPRS J. Photogram. Remote Sens. 2011, 66, 146–152. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.L.; Lu, Z. Modeling PSInSAR time series without phase unwrapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 547–556. [Google Scholar] [CrossRef]
- Zhang, L.; Lu, Z.; Ding, X.L.; Jung, H.S.; Feng, G.C.; Lee, C.W. Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin. Remote Sens. Environ. 2012, 117, 429–439. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, X.L.; Lu, Z.; Jung, H.S.; Hu, J.; Feng, G.C. A novel multi-temporal InSAR model for joint estimation of deformation rates and orbital errors. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3529–3540. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, L.; Ding, X.L.; Hu, J.; Liang, H.Y. Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: A case study of Oso, USA. Remote Sens. 2015, 7, 72–88. [Google Scholar] [CrossRef]
- Sun, Q.; Hu, J.; Zhang, L.; Ding, X.L. Towards slow-moving landslide monitoring by integrating multi-sensor InSAR time series datasets: The Zhouqu case study, China. Remote Sens. 2016, 8, 908. [Google Scholar] [CrossRef]
- Bamler, R.; Eineder, M. Accuracy of differential shift estimation by correlation and split-bandwidth interferometry for wideband and delta-k SAR systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 151–155. [Google Scholar] [CrossRef]
- Liao, M.S.; Lin, H.; Zhang, Z.X. Automatic registration of InSAR data based on least-square matching and multi-step strategy. Photogram. Eng. Remote Sens. 2004, 70, 1129–1144. [Google Scholar] [CrossRef]
- Chen, Z.W.; Zhang, L.; Zhang, G. An improved InSAR image co-registration method for pairs with relatively big distortions or large incoherent areas. Sensors 2016, 16, 1519. [Google Scholar] [CrossRef] [PubMed]
- Jia, P.Z.; Tao, Z.Z. Optimal Estimation and Its Applications; Science Press: Beijing, China, 1984. [Google Scholar]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J. Two-dimensional co-seismic surface displacements field of the Chi-Chi earthquake inferred from SAR image matching. Sensors 2008, 8, 6484–6495. [Google Scholar] [CrossRef] [PubMed]
- Moorty, S.; Roeder, C.W. Temperature-dependent bridge movements. J. Struct. Eng. 1992, 118, 1090–1105. [Google Scholar] [CrossRef]
- Ni, Y.; Hua, X.; Fan, K.; Ko, J. Correlating modal properties with temperature using long-term monitoring data and support vector machine technique. Eng. Struct. 2005, 27, 1762–1773. [Google Scholar] [CrossRef]
- Li, P.D.; Zhu, W.Z.; Guo, H.Q. The analysis of temperature effects on the long span concrete cable-stayed bridge. Spec. Struct. 2007, 24, 76–80. [Google Scholar]
- Lazecky, M.; Hlavacova, I.; Bakon, M.; Sousa, J.J.; Perissin, D.; Patricio, G. Bridge displacements monitoring using space-borne X-band SAR interferometry. IEEE J. STARS 2017, 10, 205–210. [Google Scholar] [CrossRef]
- Huang, Q.H.; Crosetto, M.; Monserrat, O.; Crippa, B. Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data. ISPRS J. Photogram. Remote Sens. 2017, 128, 204–211. [Google Scholar] [CrossRef]
- Hu, J.; Li, Z.W.; Ding, X.L.; Zhu, J.J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
Master | Slave | B_Perp. (m) | B_Temp. (day) | Height Ambiguity (m) |
---|---|---|---|---|
12 January 2009 | 27 February 2009 | 115 | 46 | 560 |
12 January 2009 | 14 April 2009 | 822 | 92 | 78 |
12 January 2009 | 15 July 2009 | 959 | 184 | 67 |
Range | Conventional | 600.19057 | −8.18 × 10−5 | −4.21 × 10−6 | −1.32 × 10−8 | 4.42 × 10−8 | −7.81 × 10−10 |
TCP method | 600.13875 | 8.61 × 10−5 | 1.08 × 10−5 | −1.73 × 10−8 | −2.84 × 10−8 | −1.91 × 10−9 | |
Azimuth | Conventional | 3999.93274 | 6.31 × 10−4 | −4.87 × 10−4 | −2.09 × 10−8 | 1.81 × 10−7 | 4.17 × 10−8 |
TCP method | 4000.49769 | −3.71 × 10−4 | 1.88 × 10−4 | 7.25 × 10−8 | 5.53 × 10−8 | −2.19 × 10−8 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Sun, Q.; Hu, J. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China. Appl. Sci. 2018, 8, 425. https://doi.org/10.3390/app8030425
Zhang L, Sun Q, Hu J. Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China. Applied Sciences. 2018; 8(3):425. https://doi.org/10.3390/app8030425
Chicago/Turabian StyleZhang, Lei, Qian Sun, and Jun Hu. 2018. "Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China" Applied Sciences 8, no. 3: 425. https://doi.org/10.3390/app8030425
APA StyleZhang, L., Sun, Q., & Hu, J. (2018). Potential of TCPInSAR in Monitoring Linear Infrastructure with a Small Dataset of SAR Images: Application of the Donghai Bridge, China. Applied Sciences, 8(3), 425. https://doi.org/10.3390/app8030425