Collaborative Service Network Design for Multiple Logistics Carriers Considering Demand Uncertainty
Abstract
:1. Introduction
2. Literature Review
2.1. SND in Deterministic Environment
2.2. SND Considering Uncertainty
3. Problem Description and Formulation
3.1. Problem Description
- Each logistics carrier has a sufficient number of homogeneous vehicles.
- The scenarios considered in this paper are less-than-truckload (LTL) freight with vehicle capacity sufficient to fulfill any freight order.
- The scheduling of vehicles needs to satisfy balanced constraints.
- Splitting is allowed for every freight order.
- Freight orders are allowed to be outsourced, and the cost of outsourcing per unit of cargo is .
3.2. Mathematical Formulation
4. Algorithm Design
4.1. Column-and-Constraint Generation Algorithm
4.2. Subproblem of CCG Algorithm
5. Computational Experiments
5.1. Instance and Parameter Settings
5.2. Efficiency of Algorithm
5.3. Analysis of Collaboration
5.3.1. Cost Savings of Collaboration
5.3.2. Composition of Cost Savings
5.3.3. Discussion
5.4. Analysis of Robust Optimization
5.4.1. Advantages under Different Demand Fluctuation
5.4.2. Advantages under Different Uncertainty Budget
5.4.3. Discussion
5.5. Allocation of Cost Savings
6. Managerial Implications and Theoretical Contributions
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, R.; Wallace, S.W.; Li, J.; Chong, A.Y.L. Stochastic service network design with rerouting. Transp. Res. Part B Methodol. 2014, 60, 50–65. [Google Scholar] [CrossRef]
- Crainic, T.G. Service network design in freight transportation. Eur. J. Oper. Res. 2000, 122, 272–288. [Google Scholar] [CrossRef]
- Lium, A.G.; Crainic, T.G.; Wallace, S.W. A study of demand stochasticity in service network design. Transp. Sci. 2009, 43, 144–157. [Google Scholar] [CrossRef]
- Agarwal, R.; Ergun, Ö. Network design and allocation mechanisms for carrier alliances in liner shipping. Oper. Res. 2010, 58, 1726–1742. [Google Scholar] [CrossRef]
- Agarwal, R.; Ergun, Ö. Ship scheduling and network design for cargo routing in liner shipping. Transp. Sci. 2008, 42, 175–196. [Google Scholar] [CrossRef]
- Crainic, T.G.; Rousseau, J.M. Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem. Transp. Res. Part B Methodol. 1986, 20, 225–242. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, M. Robust service network design under demand uncertainty. Transp. Sci. 2020, 54, 676–689. [Google Scholar] [CrossRef]
- Hewitt, M. The flexible scheduled service network design problem. Transp. Sci. 2022, 56, 1000–1021. [Google Scholar] [CrossRef]
- Pedersen, M.B.; Crainic, T.G.; Madsen, O.B. Models and tabu search metaheuristics for service network design with asset-balance requirements. Transp. Sci. 2009, 43, 158–177. [Google Scholar] [CrossRef]
- Andersen, J.; Crainic, T.G.; Christiansen, M. Service network design with asset management: Formulations and comparative analyses. Transp. Res. Part C Emerg. Technol. 2009, 17, 197–207. [Google Scholar] [CrossRef]
- Wieberneit, N. Service network design for freight transportation: A review. OR Spectr. 2008, 30, 77–112. [Google Scholar] [CrossRef]
- Kim, D.; Barnhart, C.; Ware, K.; Reinhardt, G. Multimodal express package delivery: A service network design application. Transp. Sci. 1999, 33, 391–407. [Google Scholar] [CrossRef]
- Armacost, A.P.; Barnhart, C.; Ware, K.A. Composite variable formulations for express shipment service network design. Transp. Sci. 2002, 36, 1–20. [Google Scholar] [CrossRef]
- Ghamlouche, I.; Crainic, T.G.; Gendreau, M. Cycle-based neighborhoods for fixed-charge capacitated multicommodity network design. Oper. Res. 2003, 51, 655–667. [Google Scholar] [CrossRef]
- Ghamlouche, I.; Crainic, T.G.; Gendreau, M. Path relinking, cycle-based neighbourhoods and capacitated multicommodity network design. Ann. Oper. Res. 2004, 131, 109–133. [Google Scholar] [CrossRef]
- Yaghini, M.; Karimi, M.; Rahbar, M.; Sharifitabar, M.H. A cutting-plane neighborhood structure for fixed-charge capacitated multicommodity network design problem. INFORMS J. Comput. 2015, 27, 48–58. [Google Scholar] [CrossRef]
- Smilowitz, K.R.; Atamtürk, A.; Daganzo, C.F. Deferred item and vehicle routing within integrated networks. Transp. Res. Part E Logist. Transp. Rev. 2003, 39, 305–323. [Google Scholar] [CrossRef]
- Andersen, J.; Crainic, T.G.; Christiansen, M. Service network design with management and coordination of multiple fleets. Eur. J. Oper. Res. 2009, 193, 377–389. [Google Scholar] [CrossRef]
- Andersen, J.; Christiansen, M.; Crainic, T.G.; Grønhaug, R. Branch and price for service network design with asset management constraints. Transp. Sci. 2011, 45, 33–49. [Google Scholar] [CrossRef]
- Crainic, T.G.; Hewitt, M.; Toulouse, M.; Vu, D.M. Service network design with resource constraints. Transp. Sci. 2016, 50, 1380–1393. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, M.; Cheng, C.; Zhang, C. A hybrid algorithm for large-scale service network design considering a heterogeneous fleet. Eur. J. Oper. Res. 2019, 276, 483–494. [Google Scholar] [CrossRef]
- Hewitt, M.; Lehuédé, F. New formulations for the scheduled service network design problem. Transp. Res. Part B Methodol. 2023, 172, 117–133. [Google Scholar] [CrossRef]
- Belieres, S.; Hewitt, M.; Jozefowiez, N.; Semet, F.; Van Woensel, T. A Benders decomposition-based approach for logistics service network design. Eur. J. Oper. Res. 2020, 286, 523–537. [Google Scholar] [CrossRef]
- Dufour, É.; Laporte, G.; Paquette, J.; Rancourt, M.È. Logistics service network design for humanitarian response in East Africa. Omega 2018, 74, 1–14. [Google Scholar] [CrossRef]
- Belieres, S.; Hewitt, M.; Jozefowiez, N.; Semet, F. Meta partial benders decomposition for the logistics service network design problem. Eur. J. Oper. Res. 2022, 300, 473–489. [Google Scholar] [CrossRef]
- Ulutaş, A.; Kiridena, S.; Shukla, N.; Topal, A. A New Fuzzy Stochastic Integrated Model for Evaluation and Selection of Suppliers. Axioms 2023, 12, 1070. [Google Scholar] [CrossRef]
- Niu, K.; Liu, J.; Wang, Y. Research methodology: Application of railway luggage and package transportation scheme formulation based on a dynamic time–space service network. Symmetry 2019, 11, 1226. [Google Scholar] [CrossRef]
- Xiang, X.; Fang, T.; Liu, C.; Pei, Z. Robust service network design problem under uncertain demand. Comput. Ind. Eng. 2022, 172, 108615. [Google Scholar] [CrossRef]
- Wang, X.; Crainic, T.G.; Wallace, S.W. Stochastic network design for planning scheduled transportation services: The value of deterministic solutions. INFORMS J. Comput. 2019, 31, 153–170. [Google Scholar] [CrossRef]
- Ng, M.; Lo, H.K. Robust models for transportation service network design. Transp. Res. Part B Methodol. 2016, 94, 378–386. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, M. Service network design considering multiple types of services. Transp. Res. Part E Logist. Transp. Rev. 2019, 126, 1–14. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X. A two-stage robust model for express service network design with surging demand. Eur. J. Oper. Res. 2022, 299, 154–167. [Google Scholar] [CrossRef]
- Ma, J.; Wang, X.; Yang, K.; Jiang, L. Uncertain programming model for the cross-border multimodal container transport system based on inland ports. Axioms 2023, 12, 132. [Google Scholar] [CrossRef]
- Bertsimas, D.; Sim, M. The price of robustness. Oper. Res. 2004, 52, 35–53. [Google Scholar] [CrossRef]
- Ben-Tal, A.; Goryashko, A.; Guslitzer, E.; Nemirovski, A. Adjustable robust solutions of uncertain linear programs. Math. Program. 2004, 99, 351–376. [Google Scholar] [CrossRef]
- Zeng, B.; Zhao, L. Solving two-stage robust optimization problems using a column-and-constraint generation method. Oper. Res. Lett. 2013, 41, 457–461. [Google Scholar] [CrossRef]
No. | T | #Orders | ||
---|---|---|---|---|
I1 | 2 | 6 | 5 | 8 |
I2 | 2 | 12 | 5 | 16 |
I3 | 2 | 12 | 10 | 16 |
I4 | 3 | 12 | 5 | 16 |
I5 | 3 | 18 | 5 | 24 |
I6 | 3 | 18 | 10 | 24 |
NO. | BD | CCG | Diff (%) | ||||||
---|---|---|---|---|---|---|---|---|---|
T (s) | #Opt | #Fs | Gap (%) | T (s) | #Opt | #Fs | Gap (%) | ||
I1 | 3517 | 1 | 36 | 28.16 | 100 | 36 | 36 | 0 | 7.42 |
I2 | 3600 | 0 | 36 | 62.58 | 446 | 36 | 36 | 0 | 25.92 |
I3 | 3600 | 0 | 36 | 80.21 | 4128 | 13 | 36 | 1.13 | 54.46 |
I4 | 3600 | 0 | 36 | 63.41 | 329 | 36 | 36 | 0 | 25.28 |
I5 | 3600 | 0 | 36 | 87.68 | 1603 | 30 | 36a | 0.06 | 78.16 |
I6 | 4277 | 0 | 36 | 94.52 | 5906 | 1 | 36 | 3.66 | 146.13 |
Average | 3699 | 0.17 | 36 | 69.43 | 2085 | 25.33 | 36 | 0.81 | 56.23 |
Equal | Investment | Shapley | |
---|---|---|---|
I4 | 0 | 0 | 0 |
I5 | 0 | 0 | 0 |
Total | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Huang, M.; Wang, H. Collaborative Service Network Design for Multiple Logistics Carriers Considering Demand Uncertainty. Symmetry 2024, 16, 1083. https://doi.org/10.3390/sym16081083
Zhang Q, Huang M, Wang H. Collaborative Service Network Design for Multiple Logistics Carriers Considering Demand Uncertainty. Symmetry. 2024; 16(8):1083. https://doi.org/10.3390/sym16081083
Chicago/Turabian StyleZhang, Qihuan, Min Huang, and Huihui Wang. 2024. "Collaborative Service Network Design for Multiple Logistics Carriers Considering Demand Uncertainty" Symmetry 16, no. 8: 1083. https://doi.org/10.3390/sym16081083
APA StyleZhang, Q., Huang, M., & Wang, H. (2024). Collaborative Service Network Design for Multiple Logistics Carriers Considering Demand Uncertainty. Symmetry, 16(8), 1083. https://doi.org/10.3390/sym16081083