Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer
Abstract
:1. Introduction
2. SMI Sensing of Shock Waves
2.1. SMI Principle
2.2. Shock Waves Acousto-Optics Modeling
2.3. Acousto-Optics Modeling Applied to Shock Tube Pressure Measurements
3. Experiments
3.1. Experimental Setup
3.2. Results
3.2.1. SMI Signal Processing
3.2.2. Results
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SMI | Self-Mixing Interferometry |
PFB | Power under FeedBack |
References
- Massoni, J.; Saurel, R.; Lefrancois, A.; Baudin, G. Modeling spherical explosions with aluminized energetic materials. Shock Waves 2006, 16, 75–92. [Google Scholar] [CrossRef]
- Sochet, I. Blast Wave Experiments of High Explosives. In Blast Effects: Physical Properties of Shock Waves; Springer: Berlin/Heidelberg, Germany, 2018; pp. 113–120. [Google Scholar]
- Friedlander, F.G. The diffraction of sound pulses I. Diffraction by a semi-infinite plane. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1946, 186, 322–344. [Google Scholar]
- Courtiaud, S.; Lecysyn, N.; Damamme, G.; Poinsot, T.; Selle, L. Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres. Shock Waves 2019, 29, 339–353. [Google Scholar] [CrossRef] [Green Version]
- Walter, P.L. Air-blast and the science of dynamic pressure measurements. Sound Vib. 2004, 38, 10–17. [Google Scholar]
- Riondet, J.; Coustou, A.; Aubert, H.; Pons, P.; Lavayssière, M.; Luc, J.; Lefrançois, A. Design of air blast pressure sensors based on miniature silicon membrane and piezoresistive gauges. In Journal of Physics: Conference Series; IOP Publishing: Bristol, UK, 2017; Volume 922, p. 012019. [Google Scholar]
- MacPherson, W.N.; Gander, M.J.; Barton, J.S.; Jones, J.D.C.; Owen, C.; Watson, A.; Allen, R. Blast-pressure measurement with a high-bandwidth fibre optic pressure sensor. Meas. Sci. Technol. 2000, 11, 95. [Google Scholar] [CrossRef]
- Watson, S.; MacPherson, W.; Barton, J.; Jones, J.; Tyas, A.; Pichugin, A.; Hindle, A.; Parkes, W.; Dunare, C.; Stevenson, T. Investigation of shock waves in explosive blasts using fibre optic pressure sensors. Meas. Sci. Technol. 2006, 17, 1337. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Kobayashi, K. External optical feedback effects on semiconductor injection laser properties. IEEE J. Quantum Electron. 1980, 16, 347–355. [Google Scholar] [CrossRef]
- Van Tartwijk, G.; Lenstra, D. Semiconductor lasers with optical injection and feedback. Quantum Semiclass. Opt. J. Eur. Opt. Soc. Part 1995, 7, 87. [Google Scholar] [CrossRef]
- Taimre, T.; Nikolić, M.; Bertling, K.; Lim, Y.L.; Bosch, T.; Rakić, A.D. Laser feedback interferometry: A tutorial on the self-mixing effect for coherent sensing. Adv. Opt. Photonics 2015, 7, 570–631. [Google Scholar] [CrossRef]
- Petermann, K. Laser Diode Modulation and Noise; Springer: Berlin/Heidelberg, Germany, 1991; Volume 3. [Google Scholar]
- Al Roumy, J.; Perchoux, J.; Lim, Y.L.; Taimre, T.; Rakić, A.D.; Bosch, T. Effect of injection current and temperature on signal strength in a laser diode optical feedback interferometer. Appl. Opt. 2015, 54, 312–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, Y.; Xi, J.; Chicharo, J.F.; Bosch, T.M. Optical Feedback Self-Mixing Interferometry With a Large Feedback Factor C: Behavior Studies. IEEE J. Quantum Electron. 2009, 45, 840–848. [Google Scholar] [CrossRef]
- Veng, M.; Bony, F.; Perchoux, J. Disappearance of fringes in the self-mixing interferometry sensing scheme: Impact of the initial laser mode solution. Opt. Lett. 2021, 46, 1991–1994. [Google Scholar] [CrossRef] [PubMed]
- Bertling, K.; Perchoux, J.; Taimre, T.; Malkin, R.; Robert, D.; Rakić, A.D.; Bosch, T. Imaging of acoustic fields using optical feedback interferometry. Opt. Express 2014, 22, 30346–30356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schardin, H. Ergebnisse der Exakten Naturwissenschaften; Springer: Berlin/Heidelberg, Germany, 1942; Volume 20, pp. 303–439. [Google Scholar]
- Needham, C.E.; Needham, C.E. The Rankine-Hugoniot Relations. Blast Waves 2018, 9–17. [Google Scholar]
- Settles, G.S. Schlieren and Shadowgraph Techniques: Visualizing Phenomena in Transparent Media; Springer: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Merzkirch, W. Flow Visualization; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Downes, S.; Knott, A.; Robinson, I. Towards a shock tube method for the dynamic calibration of pressure sensors. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2014, 372, 20130299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishida, M. Shock tubes. In Handbook of Shock Waves; Elsevier: Amsterdam, The Netherlands, 2001; pp. 553–585. [Google Scholar]
- Walter, P.L. Introduction to Air Blast Measurements-Part II: Interfacing the Transducer; PCB Piezotronics Inc.: Depew, NY, USA, 2022; pp. 1–5. [Google Scholar]
- Lavayssière, M.; Luc, J.; Lefrançois, A. Experimental Studies Around Shock Tube for Dynamic Calibrations of High-Frequency Pressure Transducers. In 31st International Symposium on Shock Waves 1: Fundamentals; Springer: Berlin/Heidelberg, Germany, 2019; pp. 319–327. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maqueda, S.; Perchoux, J.; Tronche, C.; Imas González, J.J.; Genetier, M.; Lavayssière, M.; Barbarin, Y. Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer. Sensors 2023, 23, 3720. https://doi.org/10.3390/s23073720
Maqueda S, Perchoux J, Tronche C, Imas González JJ, Genetier M, Lavayssière M, Barbarin Y. Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer. Sensors. 2023; 23(7):3720. https://doi.org/10.3390/s23073720
Chicago/Turabian StyleMaqueda, Sébastien, Julien Perchoux, Clément Tronche, José Javier Imas González, Marc Genetier, Maylis Lavayssière, and Yohan Barbarin. 2023. "Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer" Sensors 23, no. 7: 3720. https://doi.org/10.3390/s23073720
APA StyleMaqueda, S., Perchoux, J., Tronche, C., Imas González, J. J., Genetier, M., Lavayssière, M., & Barbarin, Y. (2023). Demonstration of Pressure Wave Observation by Acousto-Optic Sensing Using a Self-Mixing Interferometer. Sensors, 23(7), 3720. https://doi.org/10.3390/s23073720