Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Emotion Dataset and Data Analysis
2.1.1. Emotion Dataset
2.1.2. Preprocessing
2.1.3. Feature Extraction
2.1.4. Feature Selection and Classification
2.2. Attention Dataset and Data Analysis
2.2.1. Attention Dataset
2.2.2. Data Analysis
2.3. Determination of Optimal Electrode Configuration
3. Results
3.1. Optimal Electrode Configurations
3.2. Performance Comparison
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Birbaumer, N. Breaking the silence: Brain–computer interfaces (BCI) for communication and motor control. Psychophysiology 2006, 43, 517–532. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-J.; Lim, J.-H.; Jung, Y.-J.; Choi, H.; Lee, S.W.; Im, C.-H. Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. J. Neurosci. Methods 2012, 208, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.-C.; Chien, T.-Y.; Pan, J.-S.; Lin, B.-S. Novel non-contact control system for medical healthcare of disabled patients. IEEE Access 2016, 4, 5687–5694. [Google Scholar] [CrossRef]
- Pfurtscheller, G.; Müller-Putz, G.R.; Scherer, R.; Neuper, C. Rehabilitation with brain-computer interface systems. Computer 2008, 41, 58–65. [Google Scholar] [CrossRef]
- Park, S.; Cha, H.-S.; Im, C.-H. Development of an Online Home Appliance Control System Using Augmented Reality and an SSVEP-Based Brain–Computer Interface. IEEE Access 2019, 7, 163604–163614. [Google Scholar] [CrossRef]
- Lopez-Gordo, M.A.; Sanchez-Morillo, D.; Valle, F.P. Dry EEG electrodes. Sensors 2014, 14, 12847–12870. [Google Scholar] [CrossRef]
- Di Flumeri, G.; Aricò, P.; Borghini, G.; Sciaraffa, N.; Di Florio, A.; Babiloni, F. The dry revolution: Evaluation of three different EEG dry electrode types in terms of signal spectral features, mental states classification and usability. Sensors 2019, 19, 1365. [Google Scholar] [CrossRef] [Green Version]
- Debener, S.; Minow, F.; Emkes, R.; Gandras, K.; Vos, M. How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 2012, 49, 1617–1621. [Google Scholar] [CrossRef]
- Arico, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Colosimo, A.; Babiloni, F. Passive BCI in Operational Environments: Insights, Recent Advances and Future trends. IEEE Trans. Biomed. Eng. 2017, 64, 1431–1436. [Google Scholar] [CrossRef]
- Zander, T.O.; Kothe, C. Towards passive brain–computer interfaces: Applying brain–computer interface technology to human–machine systems in general. J. Neural Eng. 2011, 8, 025005. [Google Scholar] [CrossRef]
- Kawasaki, M.; Yamaguchi, Y. Effects of subjective preference of colors on attention-related occipital theta oscillations. Neuroimage 2012, 59, 808–814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cherubino, P.; Martinez-Levy, A.C.; Caratu, M.; Cartocci, G.; Di Flumeri, G.; Modica, E.; Rossi, D.; Mancini, M.; Trettel, A. Consumer behaviour through the eyes of neurophysiological measures: State-of-the-art and future trends. Comput. Intell. Neurosci. 2019, 2019, 1976847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dmochowski, J.P.; Bezdek, M.A.; Abelson, B.P.; Johnson, J.S.; Schumacher, E.H.; Parra, L.C. Audience preferences are predicted by temporal reliability of neural processing. Nat. Commun. 2014, 5, 4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, S.J.; Hecker, K.G.; Krigolson, O.E.; Jamniczky, H.A. A Reinforcement-Based Learning Paradigm Increases Anatomical Learning and Retention—A Neuroeducation Study. Front. Hum. Neurosci. 2018, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Park, K.S.; Choi, S.H. Smart technologies toward sleep monitoring at home. Biomed. Eng. Lett. 2019, 9, 73–85. [Google Scholar] [CrossRef]
- Songsamoe, S.; Saengwong-ngam, R.; Koomhin, P.; Matan, N. Understanding consumer physiological and emotional responses to food products using Electroencephalography (EEG). Trends Food Sci. Technol. 2019, 93, 167–173. [Google Scholar] [CrossRef]
- Guo, Z.; Pan, Y.; Zhao, G.; Cao, S.; Zhang, J. Detection of driver vigilance level using EEG signals and driving contexts. IEEE Trans. Reliab. 2017, 67, 370–380. [Google Scholar] [CrossRef]
- Dehais, F.; Lafont, A.; Roy, R.; Fairclough, S. A Neuroergonomics Approach to Mental Workload, Engagement and Human Performance. Front. Neurosci. 2020, 14, 268. [Google Scholar] [CrossRef]
- Di Flumeri, G.; De Crescenzio, F.; Berberian, B.; Ohneiser, O.; Kramer, J.; Aricò, P.; Borghini, G.; Babiloni, F.; Bagassi, S.; Piastra, S. BCI-based adaptive automation to prevent Out-Of-The-Loop phenomenon in Air Traffic Controllers dealing with highly automated systems. Front. Hum. Neurosci. 2019, 13, 296. [Google Scholar] [CrossRef] [Green Version]
- Lotte, F.; Roy, R.N. Brain–computer interface contributions to neuroergonomics. In Neuroergonomics; Elsevier: London, UK, 2019; pp. 43–48. [Google Scholar]
- Beauregard, M.; Courtemanche, J.; Paquette, V. Brain activity in near-death experiencers during a meditative state. Resuscitation 2009, 80, 1006–1010. [Google Scholar] [CrossRef]
- Liu, N.-H.; Chiang, C.-Y.; Chu, H.-C. Recognizing the degree of human attention using EEG signals from mobile sensors. Sensors 2013, 13, 10273–10286. [Google Scholar] [CrossRef] [PubMed]
- Chang, W.-D.; Lim, J.-H.; Im, C.-H. An unsupervised eye blink artifact detection method for real-time electroencephalogram processing. Physiol. Meas. 2016, 37, 401–417. [Google Scholar] [CrossRef] [PubMed]
- Han, C.-H.; Lee, J.-H.; Lim, J.-H.; Kim, Y.-W.; Im, C.-H. Global Electroencephalography Synchronization as a New Indicator for Tracking Emotional Changes of a Group of Individuals during Video Watching. Front. Hum. Neurosci. 2017, 11, 577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clerico, A.; Tiwari, A.; Gupta, R.; Jayaraman, S.; Falk, T.H. Electroencephalography Amplitude Modulation Analysis for Automated Affective Tagging of Music Video Clips. Front. Comput. Neurosci. 2018, 11, 115. [Google Scholar] [CrossRef]
- Casson, A.J. Wearable EEG and beyond. Biomed. Eng. Lett. 2019, 9, 53–71. [Google Scholar] [CrossRef]
- Koelstra, S.; Mühl, C.; Soleymani, M.; Lee, J.-S.; Yazdani, A.; Ebrahimi, T.; Pun, T.; Nijholt, A.; Patras, I. Deap: A database for emotion analysis; using physiological signals. Affect. Comput. IEEE Trans. 2012, 3, 18–31. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A. Affective space is bipolar. J. Pers. Soc. Psychol. 1979, 37, 345–356. [Google Scholar] [CrossRef]
- Chang, W.-D.; Cha, H.-S.; Kim, K.; Im, C.-H. Detection of eye blink artifacts from single prefrontal channel electroencephalogram. Comput. Methods Programs Biomed. 2016, 124, 19–30. [Google Scholar] [CrossRef]
- Hjorth, B. The physical significance of time domain descriptors in EEG analysis. Electroencephalogr. Clin. Neurophysiol. 1973, 34, 321–325. [Google Scholar] [CrossRef]
- Shannon, C. A mathematical theory of communication. Bell Systems Technol. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Feder, J. Fractals (Physics of Solids Liquids); Plenum Press: New York, NY, USA, 1988. [Google Scholar]
- Kolmogorov, A.N. Three approaches to the definition of the concept “quantity of information”. Probl. Peredachi Inf. 1965, 1, 3–11. [Google Scholar]
- Acharya, U.R.; Sree, S.V.; Suri, J.S. Automatic detection of epileptic EEG signals using higher order cumulant features. Int. J. Neural Syst. 2011, 21, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Ramoser, H.; Muller-Gerking, J.; Pfurtscheller, G. Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 2000, 8, 441–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brickenkamp, R.; Zillmer, E. The D2 Test of Attention; Hogrefe & Huber Pub: Cambridge, MA, USA, 1998. [Google Scholar]
- Bates, M.E.; Lemay, E.P. The d2 Test of attention: Construct validity and extensions in scoring techniques. J. Int. Neuropsychol. Soc. 2004, 10, 392–400. [Google Scholar] [CrossRef]
- Kim, J.-H.; Kim, D.-W.; Im, C.-H. Brain areas responsible for vigilance: An EEG source imaging study. Brain Topogr. 2017, 30, 343–351. [Google Scholar] [CrossRef]
- Ganguly, S.; Singla, R. Electrode Channel Selection for Emotion Recognition based on EEG Signal. In Proceedings of the 2019 IEEE 5th International Conference for Convergence in Technology (I2CT), Prune, India, 29–31 March 2019; pp. 1–4. [Google Scholar]
- Siamaknejad, H.; Liew, W.S.; Loo, C.K. Fractal dimension methods to determine optimum EEG electrode placement for concentration estimation. Neural Comput. Appl. 2019, 31, 945–953. [Google Scholar] [CrossRef]
- Abdullah, M.K.; Subari, K.S.; Loong, J.L.C.; Ahmad, N.N. Analysis of effective channel placement for an EEG-based biometric system. In Proceedings of the 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur, Malaysia, 30 November–2 December 2010; pp. 303–306. [Google Scholar]
- Yang, S.; Hoque, S.; Deravi, F. Improved time-frequency features and electrode placement for EEG-based biometric person recognition. IEEE Access 2019, 7, 49604–49613. [Google Scholar] [CrossRef]
- Angelidis, A.; Hagenaars, M.; van Son, D.; van der Does, W.; Putman, P. Do not look away! Spontaneous frontal EEG theta/beta ratio as a marker for cognitive control over attention to mild and high threat. Biol. Psychol. 2018, 135, 8–17. [Google Scholar] [CrossRef]
- Coan, J.A.; Allen, J.J. Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 2004, 67, 7–50. [Google Scholar] [CrossRef]
- Zhao, G.; Zhang, Y.; Ge, Y. Frontal EEG asymmetry and middle line power difference in discrete emotions. Front. Behav. Neurosci. 2018, 12, 225. [Google Scholar] [CrossRef] [Green Version]
- Gevins, A.; Smith, M.E.; Leong, H.; McEvoy, L.; Whitfield, S.; Du, R.; Rush, G. Monitoring working memory load during computer-based tasks with EEG pattern recognition methods. Hum. Factors: J. Hum. Factors Ergon. Soc. 1998, 40, 79–91. [Google Scholar] [CrossRef] [PubMed]
- Holm, A.; Lukander, K.; Korpela, J.; Sallinen, M.; Müller, K.M. Estimating brain load from the EEG. Sci. World J. 2009, 9, 639–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aftanas, L.; Golocheikine, S. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: High-resolution EEG investigation of meditation. Neurosci. Lett. 2001, 310, 57–60. [Google Scholar] [CrossRef]
- Schutter, D.J.; Putman, P.; Hermans, E.; van Honk, J. Parietal electroencephalogram beta asymmetry and selective attention to angry facial expressions in healthy human subjects. Neurosci. Lett. 2001, 314, 13–16. [Google Scholar] [CrossRef]
- Lin, Y.-P.; Wang, C.-H.; Jung, T.-P.; Wu, T.-L.; Jeng, S.-K.; Duann, J.-R.; Chen, J.-H. EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. 2010, 57, 1798–1806. [Google Scholar] [PubMed]
- Roy, R.N.; Bonnet, S.; Charbonnier, S.; Campagne, A. Mental fatigue and working memory load estimation: Interaction and implications for EEG-based passive BCI. In Proceedings of the 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Osaka, Japan, 3–7 July 2013; pp. 6607–6610. [Google Scholar]
- Aricò, P.; Borghini, G.; Di Flumeri, G.; Sciaraffa, N.; Babiloni, F. Passive BCI beyond the lab: Current trends and future directions. Physiol. Meas. 2018, 39, 08TR02. [Google Scholar] [CrossRef]
- Feupe, S.F.; Frias, P.F.; Mednick, S.C.; McDevitt, E.A.; Heintzman, N.D. Nocturnal continuous glucose and sleep stage data in adults with type 1 diabetes in real-world conditions. J. Diabetes Sci. Technol. 2013, 7, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Debellemaniere, E.; Chambon, S.; Pinaud, C.; Thorey, V.; Dehaene, D.; Léger, D.; Chennaoui, M.; Arnal, P.J.; Galtier, M.N. Performance of an Ambulatory Dry-EEG Device for Auditory Closed-Loop Stimulation of Sleep Slow Oscillations in the Home Environment. Front. Hum. Neurosci. 2018, 12, 88. [Google Scholar] [CrossRef]
Feature | Mathematical Expression |
---|---|
Power Spectral Density (PSD) 1 | |
Differential Asymmetry (DASM) | Difference between PSDs of interhemispheric electrode pairs |
Rational Asymmetry (RASM) | Ratio between PSDs of interhemispheric electrode pairs |
Hjorth Parameters 2 [30] | |
Shannon Entropy 3 [31] | |
Hurst Exponent 4 [32] | |
Kolmogorov Complexity 5 [33] | c(n)/b(n) |
Higher-order Cumulants 6 [34] | |
Common Spatial Pattern 7 [35] | , where p = 1 to 2m |
Study | Total Number of Electrodes | Number of Electrodes of Proposed Design | Applications |
---|---|---|---|
Ganguly et al. [39] | 11 | 1 | Emotion Classification |
Siamaknejad et al. [40] | 20 | 1 | Attention Estimation |
Abdullah et al. [41] | 8 | 2, 4 | Biometric Recognition |
Yang et al. [42] | 20 | 4 | Biometric Recognition |
Present Study | 32 | 2, 4, 6, 8 | Emotion Classification Attention Estimation |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Han, C.-H.; Im, C.-H. Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. Sensors 2020, 20, 4572. https://doi.org/10.3390/s20164572
Park S, Han C-H, Im C-H. Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. Sensors. 2020; 20(16):4572. https://doi.org/10.3390/s20164572
Chicago/Turabian StylePark, Seonghun, Chang-Hee Han, and Chang-Hwan Im. 2020. "Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications" Sensors 20, no. 16: 4572. https://doi.org/10.3390/s20164572
APA StylePark, S., Han, C.-H., & Im, C.-H. (2020). Design of Wearable EEG Devices Specialized for Passive Brain–Computer Interface Applications. Sensors, 20(16), 4572. https://doi.org/10.3390/s20164572