Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data: Sentinel-1 and Sentinel-2 Dataset
2.3. Classification Methodology
2.3.1. Ground Truth Data Collection
2.3.2. Satellite Data Integration
Creation of the Local Nested Grid LNG Specific to Tunisia and Generation of Tuplekeys
- The coordinate system (CRS): in this case, UTM 32 WGS84;
- The coordinates of the upper-left-hand corner of the grid: initial NW (northwest) origin longitude (DEG) equal to 7.50 and initial NW (northwest) origin latitude (DEG) equal to 37.57;
- Region of interest (ROI): the area of interest covers all of Tunisia, part of the north of Algeria, the north of Libya and the south of Italy, which are equal to 830,000.000 m in width, such that the defined LNG can be used for any project in Tunisia.
- GSD for the maximum level of detail (LOD) is defined as 10 m, which corresponds to the spatial resolution of Sentinel-1 and 2;
- Tile dimensions: 256 × 256 (rows × columns);
- Interval of level of detail LOD: LOD 4 with a spatial resolution equal to 30 m was chosen as the storage level to keep appropriately sized files. LOD 4 is described as the conventional storage LOD for all the files of both satellite missions, Sentinel-1, and Sentinel-2, because it is the most suitable according to the explanations provided in [21]. The Cap Bon region is covered by 12 Tuplekeys (Figure 5).
- Recursive ratio factor in LODs is equal to 3.
- Recursive ratio factor in tiles is defined as 1, because the spatial resolution of Sentinel-1 is 10 m and the spatial resolution of Sentinel-2 is 10 m. Hence, the coefficient of proportionality between the two spatial resolutions is equal to 1.
Definition of Gdalcubes and Datacubes
The Model Management Tool MMT Plugin
Definition of Datacubes Parameters: Image Collection and Cube View
- The spatial reference system (SRS): EPSG: 32632-WGS/UTM zone 32N;
- Spatiotemporal extent: left, right, bottom, top, first date: 1 September 2019 and last date: 26 June 2021;
- Spatial size and temporal duration of cells (resolution): spatial resolution 10 m; temporal resolution: we chose to apply a Datacube view with a weekly temporal resolution; it contains values from all images included within that temporal duration.
- Spatial image resampling method: bilinear;
- Temporal aggregation method: mean.
- Allowing us to operate with reduced memory requirements;
- Allowing us to operate with specified Datacubes (whose spatial extent can be automatically assigned to the specific Tuplekeys when the LNG is introduced), which is very useful to accelerate the classification process for the subsequent step.
2.3.3. Preparation of Training Data for the Spatiotemporal Analysis
2.3.4. Classification Process
Algorithm Calibration
- The first scenario: only the optical feature NDVI was used as input;
- The second scenario: NDVI, the VV and VH channels.
Tuplekeys–Datacubes Structure Classification
Optimization of Results
2.3.5. Final Crop Classification Accuracy Assessment
3. Results
3.1. Analysis of Temporal Signatures of Crops
3.2. Calibration of the Algorithms
3.3. Classification Results
4. Discussion
4.1. Integration of Data through Datacubes–Tuplekeys Concept
4.2. Interoperability of SAR with Optical Data: Does the Study Conclude That Integrating SAR and Optical Data Improved the Classification Results?
4.3. Potential Factors Affecting Classification Accuracy
- The speckle noise effect, which is fundamental in all SAR images, and which may increase measurement uncertainty and result in poor classification accuracies [94], and thus should be removed [95,96]. In our case study, we downloaded the Sentinel-1 products from the GEE, which were processed by its default processing streams, which include GRD border noise removal. Therefore, we think this filter was possibly not sufficient and, for future applications, we should likely have to apply a more robust filter to attenuate the speckle effect, such as the refined Lee filter [97].
- Topography is also a major limitation in mountain regions, because it introduces distortions in the data due to the geometric and radiometric effects [98]. Cap Bon region has a landform of plains to the east and on the coast, but of mountains to the west. In general, the Cap Bon region is hilly: a third of its territory is made up of low mountains, with Djebel Abderrahmane being the highest. Additionally, it is composed of a set of asymmetrical ridges with steep slopes on one side and gentle slopes on the other, which divides the peninsula along a southwest/northwest axis. This might explain the low and very low accuracy in some regions of the study area, especially the zone marked by the (b) square, where there was an overestimation of the citrus when using the second scenario.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zekri, S.; Laajimi, A. Etude de la compétitivité du sous-secteur agrumicole en Tunisie. Le Futur des Echanges Agro-Alimentaires dans le Bassin Méditerranéen: Les Enjeux de la Mondialisation et les Défis de la Compétitivité; CIHEAM: Spain, Zaragoza, 2001; pp. 9–16. [Google Scholar]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Loveland, T.R.; Reed, B.C.; Brown, J.F.; Ohlen, D.O.; Zhu, Z.; Yang, L.W.M.J.; Merchant, J.W. Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. Int. J. Remote Sens. 2000, 21, 1303–1330. [Google Scholar] [CrossRef]
- Townshend, J.; Justice, C.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future possibilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Boryan, C.; Yang, Z.; Haack, B. Evaluation of Sentinel-1A C-band Synthetic Aperture Radar for citrus crop classification in Florida, United States. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 7369–7372. [Google Scholar]
- Rehman, A.; Deyuan, Z.; Hussain, I.; Iqbal, M.S.; Yang, Y.; Jingdong, L. Prediction of Major Agricultural Fruits Production in Pakistan by Using an Econometric Analysis and Machine Learning Technique. Int. J. Fruit Sci. 2018, 18, 445–461. [Google Scholar] [CrossRef]
- Blickensdörfer, L.; Schwieder, M.; Pflugmacher, D.; Nendel, C.; Erasmi, S.; Hostert, P. Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sens. Environ. 2022, 269, 112831. [Google Scholar] [CrossRef]
- Piedelobo, L.; Hernández-López, D.; Ballesteros, R.; Chakhar, A.; Del Pozo, S.; González-Aguilera, D.; Moreno, M.A. Scalable pixel-based crop classification combining Sentinel-2 and Landsat-8 data time series: Case study of the Duero river basin. Agric. Syst. 2019, 171, 36–50. [Google Scholar] [CrossRef]
- Azar, R.; Villa, P.; Stroppiana, D.; Crema, A.; Boschetti, M.; Brivio, P.A.; Azar, R.; Villa, P.; Stroppiana, D.; Crema, A. Assessing in-season crop classification performance using satellite data: A test case in Northern Italy Assessing in-season crop classification performance. Eur. J. Remote Sens. 2016, 49, 361–380. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; White, J.C.; Wulder, M.A. Optical remotely sensed time series data for land cover classification: A review. ISPRS J. Photogramm. Remote Sens. 2016, 116, 55–72. [Google Scholar] [CrossRef] [Green Version]
- Rogan, J.; Chen, D.M. Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog. Plann. 2004, 61, 301–325. [Google Scholar] [CrossRef]
- Mekki, I.; Bailly, J.S.; Jacob, F.; Chebbi, H.; Ajmi, T.; Blanca, Y.; Zairi, A.; Biarnès, A. Impact of farmland fragmentation on rainfed crop allocation in Mediterranean landscapes: A case study of the Lebna watershed in Cap Bon, Tunisia. Land Use Policy 2018, 75, 772–783. [Google Scholar] [CrossRef]
- Biarnès, A.; Bailly, J.-S.; Mekki, I.; Ferchichi, I. Land use mosaics in Mediterranean rainfed agricultural areas as an indicator of collective crop successions: Insights from a land use time series study conducted in Cap Bon, Tunisia. Agric. Syst. 2021, 194, 103281. [Google Scholar]
- Mekki, I.; Godinho, S.; Chebbi, R.Z.; Pinto-correia, T. Exploring the use of Sentinel-2A imagery in the cropland mapping of the Haouaria irrigated plain (Cap Bon, Tunisia) Results. In Proceedings of the 19th Scientific Days INRGREF “Sustainable NNatural Resources Management under Global Change, Hammamet, Tunisia, 10–12 April 2019; pp. 1–4. [Google Scholar]
- Shrivastava, R.J.; Gebelein, J.L. Land cover classification and economic assessment of citrus groves using remote sensing. ISPRS J. Photogramm. Remote Sens. 2007, 61, 341–353. [Google Scholar] [CrossRef]
- Xu, H.; Qi, S.; Li, X.; Gao, C.; Wei, Y.; Liu, C. Monitoring three-decade dynamics of citrus planting in Southeastern China using dense Landsat records. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102518. [Google Scholar] [CrossRef]
- Feingersh, T.; Gorte, B.G.H.; Van Leeuwen, H.J.C. Fusion of SAR and SPOT image data for crop mapping. Int. Geosci. Remote Sens. Symp. 2001, 2, 873–875. [Google Scholar]
- Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of multi-polarized multi-frequency SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305. [Google Scholar] [CrossRef]
- Wempen, J.M.; McCarter, M.K. Comparison of L-band and X-band differential interferometric synthetic aperture radar for mine subsidence monitoring in central Utah. Int. J. Min. Sci. Technol. 2017, 27, 159–163. [Google Scholar] [CrossRef]
- Tupin, F. Fusion of Optical and SAR Images. Radar Remote Sens. Urban Areas Remote Sens. Digit. Image Process 2010, 15, 1567–3200. [Google Scholar]
- Hernández-López, D.; Piedelobo, L.; Moreno, M.A.; Chakhar, A.; Ortega-Terol, D.; González-Aguilera, D. Design of a local nested grid for the optimal combined use of landsat 8 and sentinel 2 data. Remote Sens. 2021, 13, 1546. [Google Scholar] [CrossRef]
- Giuliani, G.; Masó, J.; Mazzetti, P.; Nativi, S.; Zabala, A. Paving the way to increased interoperability of earth observations data cubes. Data 2019, 4, 113. [Google Scholar] [CrossRef] [Green Version]
- Baumann, P.; Misev, D.; Merticariu, V.; Huu, B.P.; Bell, B. DataCubes: A technology survey. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 430–433. [Google Scholar]
- Killough, B. Overview of the open data cube initiative. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8629–8632. [Google Scholar]
- Purss, M.B.J.; Lewis, A.; Oliver, S.; Ip, A.; Sixsmith, J.; Evans, B.; Edberg, R.; Frankish, G.; Hurst, L.; Chan, T. Unlocking the Australian Landsat Archive—From dark data to High Performance Data infrastructures. GeoResJ 2015, 6, 135–140. [Google Scholar] [CrossRef] [Green Version]
- Baumann, P.; Mazzetti, P.; Ungar, J.; Barbera, R.; Barboni, D.; Beccati, A.; Bigagli, L.; Boldrini, E.; Bruno, R.; Calanducci, A.; et al. Big Data Analytics for Earth Sciences: The EarthServer approach. Int. J. Digit. Earth 2016, 9, 3–29. [Google Scholar] [CrossRef]
- Lewis, A.; Oliver, S.; Lymburner, L.; Evans, B.; Wyborn, L.; Mueller, N.; Raevksi, G.; Hooke, J.; Woodcock, R.; Sixsmith, J.; et al. The Australian Geoscience Data Cube—Foundations and lessons learned. Remote Sens. Environ. 2017, 202, 276–292. [Google Scholar] [CrossRef]
- Appel, M.; Pebesma, E. On-demand processing of data cubes from satellite image collections with the gdalcubes library. Data 2019, 4, 92. [Google Scholar] [CrossRef]
- Villa, G.; Mas, S.; Fernández-Villarino, X.; Martínez-Luceño, J.; Ojeda, J.C.; Pérez-Martín, B.; Tejeiro, J.A.; García-González, C.; López-Romero, E.; Soteres, C. The need of nested grids for aerial and satellite images and digital elevation models. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Brun, S. De l’Erg à la forêt. In Dynamique des Unités Paysagères d’un Boisement en Région Littorale. Forêt des Dunes de Menzel Belgacem, Cap Bon, Tunisie; Université Paris-Sorbonne: Paris, France, 2007; Available online: https://tel.archives-ouvertes.fr/tel-00139661v2 (accessed on 9 May 2022).
- Zghibi, A.; Merzougui, A.; Zouhri, L.; Tarhouni, J. Understanding groundwater chemistry using multivariate statistics techniques to the study of contamination in the Korba unconfined aquifer system of Cap-Bon (North-east of Tunisia). J. Afr. Earth Sci. 2014, 89, 1–15. [Google Scholar] [CrossRef]
- Ben Hamouda, M.F. Approche hydrogéologique et isotopique des systèmes aquifères côtiers du Cap Bon: Cas des nappes de la côte orientale et d’El Haouaria, Tunisie. Ph.D. Thesis, INAT, Tunis, Tunisia, 2008. [Google Scholar]
- Klein, T.; Nilsson, M.; Persson, A.; Håkansson, B. From open data to open analyses—New opportunities for environmental applications? Environments 2017, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Chakhar, A.; Hernández-López, D.; Ballesteros, R.; Moreno, M.A. Improving the accuracy of multiple algorithms for crop classification by integrating sentinel-1 observations with sentinel-2 data. Remote Sens. 2021, 13, 243. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. Review article A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Xu, H.; Qi, S.; Gong, P.; Liu, C.; Wang, J. Long-term monitoring of citrus orchard dynamics using time-series Landsat data: A case study in southern China. Int. J. Remote Sens. 2018, 39, 8271–8292. [Google Scholar] [CrossRef]
- Sebbar, B.; Moumni, A.; Lahrouni, A. Decisional tree models for land cover mapping and change detection based on phenological behaviors. application case: Localization of non-fully-exploited agricultural surfaces in the eastern part of the haouz plain in the semi-arid central Morocco. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2020, 44, 365–373. [Google Scholar] [CrossRef]
- Cha, S.; Park, C. The utilization of Google Earth images as reference data for the multitemporal land cover classification with MODIS data of north Korea. Korean J. Remote Sens. 2007, 23, 483–491. [Google Scholar]
- Chabalala, Y.; Adam, E. Machine Learning Classification of Fused Sentinel-1 and Sentinel-2 Image Data towards Mapping Fruit Plantations in Highly Heterogenous Landscapes. Remote Sens. 2022, 14, 2621. [Google Scholar] [CrossRef]
- Stumpf, A.; Michéa, D.; Malet, J.P. Improved co-registration of Sentinel-2 and Landsat-8 imagery for Earth surface motion measurements. Remote Sens. 2018, 10, 160. [Google Scholar] [CrossRef]
- GitHub. Appelmar/Gdalcubes: Earth Observation Data Cubes from GDAL Image Collections. Available online: https://github.com/appelmar/gdalcubes (accessed on 9 May 2022).
- Earth Observation Data Cubes from GDAL Image Collection—Gdalcubes 0.2.0 Documentation. Available online: https://gdalcubes.github.io/docs/index.html (accessed on 9 May 2022).
- Lu, M.; Appel, M.; Pebesma, E. Multidimensional arrays for analysing geoscientific data. ISPRS Int. J. Geo Inf. 2018, 7, 313. [Google Scholar] [CrossRef] [Green Version]
- Giuliani, G.; Chatenoux, B.; De Bono, A.; Rodila, D.; Richard, J.P.; Allenbach, K.; Dao, H.; Peduzzi, P. Building an Earth Observations Data Cube: Lessons learned from the Swiss Data Cube (SDC) on generating Analysis Ready Data (ARD). Big Earth Data 2017, 1, 100–117. [Google Scholar] [CrossRef] [Green Version]
- GitHub. Appelmar/Gdalcubes: Repository for gdalcubes image collection formats. Available online: https://github.com/gdalcubes/collection_formats (accessed on 10 May 2022).
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Belgiu, M.; Csillik, O. Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 2018, 204, 509–523. [Google Scholar] [CrossRef]
- Basukala, A.K.; Oldenburg, C.; Schellberg, J.; Sultanov, M.; Dubovyk, O. Towards improved land use mapping of irrigated croplands: Performance assessment of different image classification algorithms and approaches. Eur. J. Remote Sens. 2017, 50, 187–201. [Google Scholar] [CrossRef] [Green Version]
- Vanella, D.; Consoli, S.; Ramírez-Cuesta, J.M.; Tessitori, M. Suitability of the MODIS-NDVI time-series for a posteriori evaluation of the Citrus Tristeza virus epidemic. Remote Sens. 2020, 12, 1965. [Google Scholar] [CrossRef]
- Sawant, S.A.; Chakraborty, M.; Suradhaniwar, S.; Adinarayana, J.; Durbha, S.S. Time Series analysis of remote sensing observations for citrus crop growth stage and evapotranspiration estimation. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2016, 41, 1037–1042. [Google Scholar] [CrossRef] [Green Version]
- Dobson, M.C.; Ulaby, F. Microwave Backscatter Dependence on Surface Roughness, Soil Moisture, and Soil Texture: Part III—Soil Tension. IEEE Trans. Geosci. Remote Sens. 1981, GE-19, 51–61. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Moore, R.K.; Fung, A.K. Microwave remote sensing fundamentals and radiometry. In Microwave Remote Sensing: Active and Passive; Artech House: Boston, MA, USA, 1986; Volume 1. [Google Scholar]
- Baghdadi, N.; Gherboudj, I.; Zribi, M.; Sahebi, M.; King, C. Semi-empirical calibration of the IEM backscattering model using radar images and moisture and roughness field measurements. Int. J. Remote Sens. 2004, 25, 3593–3623. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Razani, M.; Dobson, M.C. Effects of Vegetation Cover on the Microwave Radiometric Sensitivity to Soil Moisture. IEEE Trans. Geosci. Remote Sens. 1983, GE-21, 51–61. [Google Scholar] [CrossRef]
- Hallikainen, M.T.; Ulaby, F.T.; Dobson, M.C.; El-Rayes, M.A.; Wu, L.-K. Microwave Dielectric Behavior of Wet Soil-Part I: Empirical models. IEEE Trans. Geosci. Remote Sens. 1985, GE-23, 25–34. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Makhamreh, Z.; Hdoush, A.A.A.; Ziadat, F.; Kakish, S. Detection of seasonal land use pattern and irrigated crops in drylands using multi-temporal sentinel images. Environ. Earth Sci. 2022, 81, 120. [Google Scholar] [CrossRef]
- Mattia, F.; Le Toan, T.; Picard, G.; Posa, F.I.; Alessio, A.D.; Notarnicola, C.; Gatti, A.M.; Rinaldi, M.; Satalino, G. Multitemporal C-Band Radar Measurements on Wheat Fields. IEEE Trans. Geosci. Remote Sens. 2003, 41, 1551–1560. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.; Ceschia, E. Remote Sensing of Environment Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Vreugdenhil, M.; Wagner, W.; Bauer-marschallinger, B.; Pfeil, I.; Teubner, I.; Rüdiger, C.; Strauss, P. Sensitivity of Sentinel-1 Backscatter to Vegetation Dynamics: An Austrian Case Study. Remote Sens. 2018, 10, 1396. [Google Scholar] [CrossRef] [Green Version]
- Larranaga, A.; Alvarez-Mozos, J.; Albizua, L.; Peters, J. Backscattering behavior of rain-fed crops along the growing season. IEEE Geosci. Remote Sens. Lett. 2013, 10, 386–390. [Google Scholar] [CrossRef]
- Skriver, H.; Svendsen, M.T.; Thomsen, A.G. Multitemporal C- and L-band polarimetric signatures of crops. IEEE Trans. Geosci. Remote Sens. 1999, 37, 2413–2429. [Google Scholar] [CrossRef]
- Liu, C.; Shang, J.; Vachon, P.W.; McNairn, H. Multiyear crop monitoring using polarimetric RADARSAT-2 data. IEEE Trans. Geosci. Remote Sens. 2013, 51, 2227–2240. [Google Scholar] [CrossRef]
- Simoes, R.; Camara, G.; Queiroz, G.; Souza, F.; Andrade, P.R.; Santos, L.; Carvalho, A.; Ferreira, K. Satellite image time series analysis for big earth observation data. Remote Sens. 2021, 13, 2428. [Google Scholar] [CrossRef]
- Nativi, S.; Mazzetti, P.; Craglia, M. A view-based model of data-cube to support big earth data systems interoperability. Big Earth Data 2017, 1, 75–99. [Google Scholar] [CrossRef] [Green Version]
- Camara, G.; Assis, L.F.; Ribeiro, G.; Ferreira, K.R.; Llapa, E.; Vinhas, L.; Maus, V.; Sanchez, A.; Souza, R.C. Big earth observation data analytics: Matching requirements to system architectures. In Proceedings of the BigSpatial ’16: Proceedings of the 5th ACM SIGSPATIAL International Workshop on Analytics for Big Geospatial Data 2016, San Francisco, CA, USA, 31 October 2016; pp. 1–6.
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Sitokonstantinou, V.; Koukos, A.; Drivas, T.; Kontoes, C.; Karathanassi, V. DataCAP: A Satellite Datacube and Crowdsourced Street-Level Images for the Monitoring of the Common Agricultural Policy. International Conference on Multimedia Modeling; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2022; Volume 13142, pp. 473–478. [Google Scholar]
- Pachón, I.; Ramírez, S.; Fonseca, D.; Lozano-Rivera, P.; Ariza, C.; Mancipe, M.P.; Villamizar, M.; Castro, H.; Cabrera, E.; Becerra, M.T. Random Forest Data Cube Based Algorithm for Land Cover. In Proceedings of the 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018; pp. 8660–8663. [Google Scholar]
- Joshi, N.; Baumann, M.; Ehammer, A.; Fensholt, R.; Grogan, K.; Hostert, P.; Jepsen, M.R.; Kuemmerle, T.; Meyfroidt, P.; Mitchard, E.T.A.; et al. A review of the application of optical and radar remote sensing data fusion to land use mapping and monitoring. Remote Sens. 2016, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Orynbaikyzy, A.; Gessner, U.; Conrad, C. Crop type classification using a combination of optical and radar remote sensing data: A review. Int. J. Remote Sens. 2019, 40, 6553–6595. [Google Scholar] [CrossRef]
- Ofori-Ampofo, S.; Pelletier, C.; Lang, S. Crop type mapping from optical and radar time series using attention-based deep learning. Remote Sens. 2021, 13, 4668. [Google Scholar] [CrossRef]
- McNairn, H.; Ellis, J.; Van der Sanden, J.J.; Hirose, T.; Brown, R.J. Providing crop information using RADARSAT-1 and satellite optical imagery. Int. J. Remote Sens. 2002, 23, 851–870. [Google Scholar] [CrossRef]
- McNairn, H.; Shang, J.; Jiao, X.; Champagne, C. The contribution of ALOS PALSAR multipolarization and polarimetric data to crop classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 3981–3992. [Google Scholar] [CrossRef] [Green Version]
- Ok, A.O.; Akyurek, Z. A segment-based approach to classify agricultural lands by using multi-temporal optical and microwave data. Int. J. Remote Sens. 2012, 33, 7184–7204. [Google Scholar]
- Peters, J.; van Coillie, F.; Westra, T.; de Wulf, R. Synergy of very high resolution optical and radar data for object-based olive grove mapping. Int. J. Geogr. Inf. Sci. 2011, 25, 971–989. [Google Scholar] [CrossRef]
- Blaes, X.; Vanhalle, L.; Defourny, P. Efficiency of crop identification based on optical and SAR image time series. Remote Sens. Environ. 2005, 96, 352–365. [Google Scholar] [CrossRef]
- Sun, L.; Chen, J.; Han, Y. Joint use of time series Sentinel-1 and Sentinel-2 imagery for cotton field mapping in heterogeneous cultivated areas of Xinjiang, China. In Proceedings of the 2019 8th International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Istanbul, Turkey, 16–19 July 2019; pp. 1–4. [Google Scholar]
- Zhao, W.; Qu, Y.; Chen, J.; Yuan, Z. Deeply synergistic optical and SAR time series for crop dynamic monitoring. Remote Sens. Environ. 2020, 247, 111952. [Google Scholar] [CrossRef]
- de Souza Mendes, F.; Baron, D.; Gerold, G.; Liesenberg, V.; Erasmi, S. Optical and SAR remote sensing synergism for mapping vegetation types in the endangered Cerrado/Amazon ecotone of Nova Mutum-Mato Grosso. Remote Sens. 2019, 11, 1161. [Google Scholar] [CrossRef] [Green Version]
- Clerici, N.; Valbuena Calderón, C.A.; Posada, J.M. Fusion of sentinel-1a and sentinel-2A data for land cover mapping: A case study in the lower Magdalena region, Colombia. J. Maps 2017, 13, 718–726. [Google Scholar] [CrossRef] [Green Version]
- Steinhausen, M.J.; Wagner, P.D.; Narasimhan, B.; Waske, B. Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 595–604. [Google Scholar] [CrossRef]
- Lira Melo de Oliveira Santos, C.; Augusto Camargo Lamparelli, R.; Kelly Dantas Araújo Figueiredo, G.; Dupuy, S.; Boury, J.; Luciano, A.C.d.S.; Torres, R.d.S.; le Maire, G. Classification of crops, pastures, and tree plantations along the season with multi-sensor image time series in a subtropical agricultural region. Remote Sens. 2019, 11, 334. [Google Scholar] [CrossRef] [Green Version]
- Roberts, J.W.; van Aardt, J.A.N.; Ahmed, F.B. Image fusion for enhanced forest structural assessment. Int. J. Remote Sens. 2011, 32, 243–266. [Google Scholar] [CrossRef]
- De Carvalho, L.M.T.; Rahman, M.M.; Hay, G.J.; Yackel, J. Optical and SAR imagery for mapping vegetation gradients in Brazilian savannas: Synergy between pixel-based and object-based approaches. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2010, 38, C7. [Google Scholar]
- Sun, Y.; Luo, J.; Wu, T.; Zhou, Y.; Liu, H.; Gao, L.; Dong, W.; Liu, W.; Yang, Y.; Hu, X.; et al. Synchronous Response Analysis of Features for Remote Sensing Crop Classification Based on Optical and SAR Time-Series Data. Sensors 2019, 19, 4227. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Millard, K.; Richardson, M. On the importance of training data sample selection in Random Forest image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7, 8489–8515. [Google Scholar] [CrossRef] [Green Version]
- Ryan, C.M.; Berry, N.J.; Joshi, N. Quantifying the causes of deforestation and degradation and creating transparent REDD+ baselines: A method and case study from central Mozambique. Appl. Geogr. 2014, 53, 45–54. [Google Scholar] [CrossRef] [Green Version]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.A.; Ferreira, K.; Picoli, M.; Camara, G.; Zurita-Milla, R.; Augustijn, E.W. Identifying spatiotemporal patterns in land use and cover samples from satellite image time series. Remote Sens. 2021, 13, 974. [Google Scholar] [CrossRef]
- Peña, M.A.; Liao, R.; Brenning, A. Using spectrotemporal indices to improve the fruit-tree crop classification accuracy. ISPRS J. Photogramm. Remote Sens. 2017, 128, 158–169. [Google Scholar] [CrossRef]
- Maghsoudi, Y.; Collins, M.J.; Leckie, D. Speckle reduction for the forest mapping analysis of multi-temporal Radarsat-1 images. Int. J. Remote Sens. 2012, 33, 1349–1359. [Google Scholar] [CrossRef]
- Haris, M.; Ashraf, M.; Ahsan, F.; Athar, A.; Malik, M. Analysis of SAR images speckle reduction techniques. In Proceedings of the 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 3–4 March 2018; pp. 1–7. [Google Scholar]
- Argenti, F.; Lapini, A.; Alparone, L.; Bianchi, T. A tutorial on speckle reduction in synthetic aperture radar images. IEEE Geosci. Remote Sens. Mag. 2013, 1, 6–35. [Google Scholar] [CrossRef]
- Yommy, A.S.; Liu, R.; Wu, A.S. SAR image despeckling using refined lee filter. In Proceedings of the 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics, Hangzhou, China, 26–27 August 2015; Volume 2, pp. 260–265. [Google Scholar]
- Ulaby, F.T.; Long, D.G. Microwave Radar and Radiometric Remote Sensing; The University of Michigan Press: Ann Arbor, MI, USA, 2014; ISBN 978-0-472-11935-6. [Google Scholar]
Crop Class | Number of Plots |
---|---|
Citrus | 1790 |
Open field | 238 |
Olive | 185 |
Group | Abbreviations | Method |
---|---|---|
Decision trees | M1 | Complex tree |
M2 | Medium tree | |
M3 | Simple tree | |
Discriminant analysis | M4 | Linear discriminant |
M5 | Quadratic discriminant | |
Support vector machines | M6 | Linear SVM |
M7 | Quadratic SVM | |
M8 | Cubic SVM | |
M9 | Fine Gaussian SVM | |
M10 | Medium Gaussian SVM | |
M11 | Coarse Gaussian SVM | |
Nearest neighbor | M12 | Fine KNN |
M13 | Medium KNN | |
M14 | Coarse KNN | |
M15 | Cosine KNN | |
M16 | Cubic KNN | |
M17 | Weighted KNN | |
Ensemble classifiers | M18 | Boosted Trees |
M19 | Bagged Trees | |
M20 | Subspace Discriminant | |
M21 | Subspace KNN | |
M22 | RUSBoost Trees |
Decision Trees | Discriminant Analysis | SVM | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | M10 | M11 | |
NDVI | 77.5 | 81.2 | 80.8 | 83.3 | 70.6 | 83.2 | 82.3 | 77.9 | 77.3 | 84.5 | 82.7 |
NDVI + VV + VH | 79.2 | 82.4 | 81.8 | 85.4 | failed | 86.4 | 85.5 | 84.2 | 76.4 | 86.2 | 82.7 |
Nearest Neighbor Classifiers | Ensemble Classifiers | ||||||||||
M12 | M13 | M14 | M15 | M16 | M17 | M18 | M19 | M20 | M21 | M22 | |
NDVI | 80.1 | 83.7 | 82.1 | 83.6 | 83.4 | 84.4 | 83.6 | 84.2 | 83.1 | 84 | 72.3 |
NDVI + VV + VH | 80.1 | 84.2 | 81.7 | 84 | 83.7 | 84.7 | 84.5 | 85.9 | 86.4 | 81.1 | 73.9 |
Citrus | Olive | Open Field | Total | UA | |
---|---|---|---|---|---|
Citrus | 187 | 10 | 64 | 261 | 0.7164751 |
Olive | 2 | 34 | 5 | 41 | 0.82926829 |
Open field | 1 | 6 | 56 | 63 | 0.88888889 |
Total | 190 | 50 | 125 | 365 | |
PA | 0.98421053 | 0.68 | 0.448 |
Citrus | Olive | Open Field | Total | UA | |
---|---|---|---|---|---|
Citrus | 184 | 16 | 64 | 264 | 0.6969697 |
Olive | 3 | 20 | 22 | 45 | 0.44444444 |
Open field | 3 | 13 | 6 | 22 | 0.27272727 |
No data | 0 | 1 | 33 | 34 | |
Total | 190 | 50 | 125 | 365 | |
PA | 0.96842105 | 0.32 | 0.512 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakhar, A.; Hernández-López, D.; Zitouna-Chebbi, R.; Mahjoub, I.; Ballesteros, R.; Moreno, M.A. Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia. Remote Sens. 2022, 14, 5013. https://doi.org/10.3390/rs14195013
Chakhar A, Hernández-López D, Zitouna-Chebbi R, Mahjoub I, Ballesteros R, Moreno MA. Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia. Remote Sensing. 2022; 14(19):5013. https://doi.org/10.3390/rs14195013
Chicago/Turabian StyleChakhar, Amal, David Hernández-López, Rim Zitouna-Chebbi, Imen Mahjoub, Rocío Ballesteros, and Miguel A. Moreno. 2022. "Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia" Remote Sensing 14, no. 19: 5013. https://doi.org/10.3390/rs14195013
APA StyleChakhar, A., Hernández-López, D., Zitouna-Chebbi, R., Mahjoub, I., Ballesteros, R., & Moreno, M. A. (2022). Optimized Software Tools to Generate Large Spatio-Temporal Data Using the Datacubes Concept: Application to Crop Classification in Cap Bon, Tunisia. Remote Sensing, 14(19), 5013. https://doi.org/10.3390/rs14195013