Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations
Abstract
:1. Introduction
2. Materials
2.1. Aircraft Experiment Observations
2.2. Remote Sensing Data
3. Methods
3.1. Optical SM Indexes
3.2. Evaluation Methods
4. Results
4.1. Comparing MODIS-Derived SM Indexes with Aircraft SM
4.2. Evaluating MODIS-Derived SM Indexes with In Situ Observed SM
4.3. Comparing Sentinel MSI-Derived SM Indexes with Aircraft SM
5. Discussion
5.1. Implications
5.2. Improvements
6. Conclusions
- (1)
- The VSDI and OPTRAM indexes achieved the best performance among the thirteen optical SM indexes as compared with aircraft and in situ observed SM. They also presented results consistent in temporal variation with the in situ observed SM.
- (2)
- The VSDI and OPTRAM presented comparable performance with each other; while the former has very simple calculation and expression, the latter requires a complex process to determine the dry and wet boundaries.
- (3)
- The VSDI and OPTRAM indexes both capitalize on two bands (i.e., the Red and SWIR bands) of the soil and vegetation spectrum sensitive to water content, whereas the other eleven SM indexes only employ one sensitive band (i.e., Red or SWIR band). This may be the main reason for the evaluation results. A classification of the optical SM indexes was proposed according to the combination of the sensitive band and insensitive band.
- (4)
- Based on the classification, improvements to the VSDI and OPTRAM were proposed and validated in this study, by adding a more sensitive band to the VSDI and combining the NDVI and modified VSDI into a new feature space for calculating optical SM indexes such as OPTRAM.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seneviratne, S.I.; Corti, T.; Davin, E.L.; Hirschi, M.; Jaeger, E.B.; Lehner, I.; Orlowsky, B.; Teuling, A.J. Investigating soil moisture-climate interactions in a changing climate: A review. Earth-Sci. Rev. 2010, 99, 125–161. [Google Scholar] [CrossRef]
- World Meteorological Organization. Essential Climate Variables. Available online: https://public.wmo.int/en/programmes/global-climate-observing-system/essential-climate-variables (accessed on 17 May 2021).
- Petropoulos, G.P.; Ireland, G.; Barrett, B. Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Phys. Chem. Earth 2015, 83–84, 36–56. [Google Scholar] [CrossRef]
- Dobriyal, P.; Qureshi, A.; Badola, R.; Hussain, S.A. A review of the methods available for estimating soil moisture and its implications for water resource management. J. Hydrol. 2012, 458, 110–117. [Google Scholar] [CrossRef]
- AghaKouchak, A.; Farahmand, A.; Melton, F.S.; Teixeira, J.; Anderson, M.C.; Wardlow, B.D.; Hain, C.R. Remote sensing of drought: Progress, challenges and opportunities. Rev. Geophys. 2015, 53, 452–480. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Chen, Y.; Sun, H. Comparisons and classification system of typical remote sensing indexes for agricultural drought. Trans. Chin. Soc. Agric. Eng. 2012, 28, 147–154. [Google Scholar]
- Sun, H.; Zhao, X.; Chen, Y.; Gong, A.; Yang, J. A new agricultural drought monitoring index combining MODIS NDWI and day-night land surface temperatures: A case study in China. Int. J. Remote Sens. 2013, 34, 8986–9001. [Google Scholar] [CrossRef]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef] [Green Version]
- Dai, A.; Trenberth, K.E.; Qian, T.T. A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2004, 5, 1117–1130. [Google Scholar] [CrossRef]
- Anderson, M.C.; Norman, J.M.; Mecikalski, J.R.; Otkin, J.A.; Kustas, W.P. A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 2. Surface moisture climatology. J. Geophys. Res.-Atmos. 2007, 112, D11112. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, B.; Zhang, C.; Liu, H.; Yang, B. DSCALE_mod16: A Model for Disaggregating Microwave Satellite Soil Moisture with Land Surface Evapotranspiration Products and Gridded Meteorological Data. Remote Sens. 2020, 12, 980. [Google Scholar] [CrossRef] [Green Version]
- Babaeian, E.; Sadeghi, M.; Jones, S.B.; Montzka, C.; Vereecken, H.; Tuller, M. Ground, Proximal, and Satellite Remote Sensing of Soil Moisture. Rev. Geophys. 2019, 57, 530–616. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Cai, C.; Liu, H.; Yang, B. Microwave and Meteorological Fusion: A method of Spatial Downscaling of Remotely Sensed Soil Moisture. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2019, 12, 1107–1119. [Google Scholar] [CrossRef]
- Peng, J.; Loew, A.; Merlin, O.; Verhoest, N.E.C. A review of spatial downscaling of satellite remotely sensed soil moisture. Rev. Geophys. 2017, 55, 341–366. [Google Scholar] [CrossRef]
- Das, N.N.; Entekhabi, D.; Njoku, E.G. An Algorithm for Merging SMAP Radiometer and Radar Data for High-Resolution Soil-Moisture Retrieval. IEEE Trans. Geosci. Remote Sens. 2011, 49, 1504–1512. [Google Scholar] [CrossRef]
- Sun, H.; Cui, Y. Evaluating Downscaling Factors of Microwave Satellite Soil Moisture Based on Machine Learning Method. Remote Sens. 2021, 13, 133. [Google Scholar] [CrossRef]
- Sun, H.; Zhou, B.; Li, H.; Ruan, L. A primary study on downscaling microwave soil moisture with MOD16 and SMAP. Yaogan Xuebao J. Remote Sens. 2021, 25, 776–790. [Google Scholar] [CrossRef]
- Sun, H.; Liu, W.; Wang, Y.; Yuan, S. Evaluation of Typical Spectral Vegetation Indices for Drought Monitoring in Cropland of the North China Plain. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2017, 10, 5404–5411. [Google Scholar] [CrossRef]
- Ishida, T.; Ando, H.; Fukuhara, M. Estimation of complex refractive index of soil particles and its dependence on soil chemical properties. Remote Sens. Environ. 1991, 38, 173–182. [Google Scholar] [CrossRef]
- Zhang, D.J.; Zhou, G.Q. Estimation of Soil Moisture from Optical and Thermal Remote Sensing: A Review. Sensors 2016, 16, 1308. [Google Scholar] [CrossRef] [Green Version]
- Petropoulos, G.P.; Srivastava, P.K.; Ferentinos, K.P.; Hristopoulos, D. Evaluating the capabilities of optical/TIR imaging sensing systems for quantifying soil water content. Geocarto Int. 2018, 35, 494–511. [Google Scholar] [CrossRef]
- Bowers, S.A.; Smith, S.J. Spectrophotometric Determination of Soil Water Content. Soil Sci. Soc. Am. J. 1972, 36, 978–980. [Google Scholar] [CrossRef]
- Liu, W.D.; Baret, F.; Gu, X.F.; Tong, Q.X.; Zheng, L.F.; Zhang, B. Relating soil surface moisture to reflectance. Remote Sens. Environ. 2002, 81, 238–246. [Google Scholar]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Jacquemoud, S.; Baret, F.; Hanocq, J.F. Modeling spectral and bidirectional soil reflectance. Remote Sens. Environ. 1992, 41, 123–132. [Google Scholar] [CrossRef]
- Zhang, N.; Hong, Y.; Qin, Q.M.; Liu, L. VSDI: A visible and shortwave infrared drought index for monitoring soil and vegetation moisture based on optical remote sensing. Int. J. Remote Sens. 2013, 34, 4585–4609. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.; Zhan, Z. Designing of the perpendicular drought index. Environ. Geol. 2006, 52, 1045–1052. [Google Scholar] [CrossRef]
- Ghulam, A.; Qin, Q.M.; Teyip, T.; Li, Z.L. Modified perpendicular drought index (MPDI): A real-time drought monitoring method. ISPRS-J. Photogramm. Remote Sens. 2007, 62, 150–164. [Google Scholar] [CrossRef]
- Yang, N.; Qin, Q.; Jin, C.; Yao, Y. The comparison and application of the methods for monitoring farmland drought based on nir-red spectral space. In Proceedings of the 2008 IEEE International Geoscience and Remote Sensing Symposium—Proceedings, Boston, MA, USA, 6–11 July 2008; pp. 871–874. [Google Scholar]
- Bryant, R.; Thoma, D.; Moran, S.; Goodrich, D.; Keefer, T.; Paige, G.; Skirvin, S. Evaluation of hyperspectral, infrared temperature and radar measurements for monitoring surface soil moisture. In Proceedings of the First Interagency Conference on Research in the Watersheds, Benson, AZ, USA, 27–30 October 2003. [Google Scholar]
- Gao, B.-c. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Ceccato, P.; Gobron, N.; Flasse, S.; Pinty, B.; Tarantola, S. Designing a spectral index to estimate vegetation water content from remote sensing data: Part 2. Validation and applications. Remote Sens. Environ. 2002, 82, 198–207. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Q.; Braswell, B.; Urbanski, S.; Boles, S.; Wofsy, S.; Moore, B., III; Ojima, D. Modeling gross primary production of temperate deciduous broadleaf forest using satellite images and climate data. Remote Sens. Environ. 2004, 91, 256–270. [Google Scholar] [CrossRef]
- Wang, L.L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, 5. [Google Scholar] [CrossRef]
- Khanna, S.; Palacios-Orueta, A.; Whiting, M.L.; Ustin, S.L.; Riano, D.; Litago, J. Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sens. Environ. 2007, 109, 154–165. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Wang, S.; Zhou, Y.; Wei, H. Construction and Verification of a New Land Surface Water Content Model Based on MODIS Data; Geomatics and Information Science of Wuhan University: Wuhan, China, 2007; pp. 205–207+211. (In Chinese) [Google Scholar]
- Yue, J.; Tian, J.; Tian, Q.; Xu, K.; Xu, N. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands. ISPRS J. Photogramm. Remote Sens. 2019, 154, 216–230. [Google Scholar] [CrossRef]
- Kubiak, K.; Justyna, S.; Jakub, S.; Spiralski, M. Estimation of Bare Soil Moisture from Remote Sensing Indices in the 0.4–2.5 mm Spectral Range. Trans. Aerosp. Res. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Sun, H.; Xu, Q. Evaluating Machine Learning and Geostatistical Methods for Spatial Gap-Filling of Monthly ESA CCI Soil Moisture in China. Remote Sens. 2021, 13, 2848. [Google Scholar] [CrossRef]
- Wilson, W.J.; Yueh, S.H.; Dinardo, S.J.; Chazanoff, S.L.; Kitiyakara, A.; Li, F.K.; Rahmat-Samii, Y. Passive active L- and S-band (PALS) microwave sensor for ocean salinity and soil moisture measurements. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1039–1048. [Google Scholar] [CrossRef]
- Colliander, A.; Njoku, E.G.; Jackson, T.J.; Chazanoff, S.; McNairn, H.; Powers, J.; Cosh, M.H. Retrieving soil moisture for non-forested areas using PALS radiometer measurements in SMAPVEX12 field campaign. Remote Sens. Environ. 2016, 184, 86–100. [Google Scholar] [CrossRef]
- Colliander, A.; Chan, S.; Kim, S.-b.; Das, N.; Yueh, S.; Cosh, M.; Bindlish, R.; Jackson, T.; Njoku, E. Long term analysis of PALS soil moisture campaign measurements for global soil moisture algorithm development. Remote Sens. Environ. 2012, 121, 309–322. [Google Scholar] [CrossRef]
- Colliander, A. SMAPVEX12 PALS Soil Moisture Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [Google Scholar] [CrossRef]
- Colliander, A.; Misra, S.; Cosh, M. SMAPVEX16 Manitoba PALS Brightness Temperature and Soil Moisture Data, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar] [CrossRef]
Sources | Parameters | Products | Temporal Coverage | Spatial Resolution | Temporal Resolution |
---|---|---|---|---|---|
SMAPVEX12 | Soil Moisture | Aircraft PALS SM | 12 June 2012 to 19 July 2012 | 1.5 km | / |
In situ SM | 7 June 2012 to 19 July 2012 | / | / | ||
Land cover classification | Land cover data | 12 June 2012 | 1.5 km | / | |
SMAPVEX16- Manitoba | Soil moisture | Aircraft PALS SM | 8 June 2016 to 22 July 2016 | 500 m | / |
In situ SM | 8 June 2016 to 22 July 2016 | / | / | ||
Land cover classification | Land cover data | 8 June 2016 | 500 m | / | |
MODIS | Surface reflectance | MOD09A1 | 7 June 2012 to 19 July 2012 and 8 June 2016 to 22 July 2016 | 500 m | 8-day |
Sentinel-2 | TOA reflectance | Level-1C | 10 June 2016 and 21 June 2016 | 10 m, 20 m, 60 m | 5-day |
Index | Equation | Correlation | References |
---|---|---|---|
PDI | N | Ghulam, Qin and Zhan [27] | |
MPDI | N | Ghulam, Qin, Teyip and Li [28] | |
DDI | N | Yang, Qin, Jin and Yao [29] | |
MSI | N | Bryant, Thoma, Moran, Goodrich, Keefer, Paige and Skirvin [30] | |
NDWI | P | Gao [31] | |
GVMI | P | Ceccato, Gobron, Flasse, Pinty and Tarantola [32] | |
LSWI | P | Xiao, Zhang, Braswell, Urbanski, Boles, Wofsy, Moore Iii and Ojima [33] | |
NMDI | N/P | Wang and Qu [34] | |
SASI | N | Khanna, Palacios-Orueta, Whiting, Ustin, Riano and Litago [35] | |
OPTRAM | P | Sadeghi, Babaeian, Tuller and Jones [36] | |
VSDI | P | Zhang, Hong, Qin and Liu [26] | |
WISOIL | WISOIL= | N | Bryant, Thoma, Moran, Goodrich, Keefer, Paige and Skirvin [30] |
SWCI | P | DU, Wang, Zhou and Wei [37] |
SMIs | R2 | RMSE | nRMSE | MAE | F |
---|---|---|---|---|---|
OPTRAM | 0.20 | 7.01% | 16.37% | 5.53% | 461.02 |
VSDI | 0.18 | 7.13% | 16.65% | 5.65% | 407.20 |
NDWI | 0.11 | 7.37% | 17.26% | 5.79% | 158.60 |
NMDI | 0.10 | 7.47% | 17.48% | 5.90% | 241.43 |
GVMI | 0.10 | 7.50% | 17.52% | 5.96% | 149.65 |
LSWI | 0.09 | 7.54% | 17.63% | 5.99% | 131.55 |
MSI | 0.08 | 7.57% | 17.69% | 6.04% | 130.03 |
SASI | 0.07 | 7.61% | 17.79% | 6.04% | 99.70 |
WISOIL | 0.06 | 7.70% | 17.96% | 6.16% | 92.83 |
SWCI | 0.06 | 7.74% | 18.06% | 6.20% | 131.31 |
DDI | 0.03 | 7.83% | 18.28% | 6.04% | 107.55 |
PDI | 0.03 | 7.83% | 18.28% | 6.26% | 89.40 |
MPDI | 0.03 | 7.84% | 18.32% | 6.29% | 95.09 |
Sources | R2 | RMSE | nRMSE | MAE | F |
---|---|---|---|---|---|
OPTRAM | 0.17 | 7.08% | 17.34% | 6.57% | 168.79 |
VSDI | 0.16 | 7.16% | 17.42% | 6.98% | 159.79 |
NDWI | 0.10 | 7.41% | 18.01% | 6.84% | 97.94 |
NMDI | 0.09 | 7.53% | 18.15% | 6.93% | 84.55 |
GVMI | 0.10 | 7.39% | 17.98% | 6.80% | 102.09 |
LSWI | 0.10 | 7.41% | 18.01% | 6.84% | 97.90 |
MSI | 0.10 | 7.41% | 18.03% | 6.82% | 96.18 |
SASI | 0.08 | 7.51% | 18.23% | 6.97% | 75.76 |
WISOIL | 0.09 | 7.47% | 18.17% | 6.90% | 83.18 |
SWCI | 0.07 | 7.61% | 18.42% | 6.98% | 58.16 |
DDI | 0.05 | 7.75% | 18.65% | 7.24% | 40.71 |
PDI | 0.05 | 7.71% | 18.59% | 7.21% | 46.65 |
MPDI | 0.02 | 7.84% | 18.93% | 7.28% | 13.14 |
Categories | Index | Bands Used |
---|---|---|
Categories 1 | PDI | NIR, Red |
MPDI | NIR, Red | |
DDI | NIR, Red | |
Categories 2 | MSI | NIR, SWIR2 |
NDWI | NIR, SWIR1 | |
GVMI | NIR, SWIR2 | |
LSWI | NIR, SWIR2 | |
NMDI | NIR, SWIR2, SWIR3 | |
SASI | NIR, SWIR1, SWIR2 | |
Categories 3 | WISOIL | SWIR1, SWIR2 |
SWCI | SWIR2, SWIR3 | |
Categories 4 | OPTRAM | NIR, Red, SWIR2 |
Categories 5 | VSDI | Blue, Red, SWIR2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Liu, H.; Ma, Y.; Xia, Q. Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations. Remote Sens. 2021, 13, 4638. https://doi.org/10.3390/rs13224638
Sun H, Liu H, Ma Y, Xia Q. Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations. Remote Sensing. 2021; 13(22):4638. https://doi.org/10.3390/rs13224638
Chicago/Turabian StyleSun, Hao, Hao Liu, Yanhui Ma, and Qunbo Xia. 2021. "Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations" Remote Sensing 13, no. 22: 4638. https://doi.org/10.3390/rs13224638
APA StyleSun, H., Liu, H., Ma, Y., & Xia, Q. (2021). Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations. Remote Sensing, 13(22), 4638. https://doi.org/10.3390/rs13224638