Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography
Abstract
:1. Introduction
2. Methods
2.1. Hypoxic Simulation Testing—Transthoracic Echocardiography
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ulloa, N.A.; Cook, J. Altitude-Induced Pulmonary Hypertension. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Cornwell, W.K., 3rd; Baggish, A.L.; Bhatta, Y.K.D.; Brosnan, M.J.; Dehnert, C.; Guseh, J.S.; Hammer, D.; Levine, B.D.; Parati, G.; Wolfel, E.E.; et al. Clinical Implications for Exercise at Altitude among Individuals with Cardiovascular Disease: A Scientific Statement from the American Heart Association. J. Am. Heart Assoc. 2021, 10, e023225. [Google Scholar] [CrossRef]
- Martin-Gill, C.; Doyle, T.J.; Yealy, D.M. In-Flight Medical Emergencies: A Review. JAMA 2018, 320, 2580–2590. [Google Scholar] [CrossRef] [PubMed]
- Organization TICA. The World of Air Transport in 2019. Available online: https://www.icao.int/annual-report-2019/Pages/the-world-of-air-transport-in-2019.aspx#:~:text=According%20to%20ICAO%27s%20preliminary%20compilation,a%201.7%20per%20cent%20increase (accessed on 20 June 2023).
- Mamazhakypov, A.; Sartmyrzaeva, M.; Kushubakova, N.; Duishobaev, M.; Maripov, A.; Sydykov, A.; Sarybaev, A. Right Ventricular Response to Acute Hypoxia Exposure: A Systematic Review. Front. Physiol. 2021, 12, 786954. [Google Scholar] [CrossRef]
- Heinonen, I.H.; Boushel, R.; Kalliokoski, K.K. The Circulatory and Metabolic Responses to Hypoxia in Humans—With Special Reference to Adipose Tissue Physiology and Obesity. Front. Endocrinol. 2016, 7, 116. [Google Scholar] [CrossRef]
- Wilkins, M.R.; Ghofrani, H.A.; Weissmann, N.; Aldashev, A.; Zhao, L. Pathophysiology and treatment of high-altitude pulmonary vascular disease. Circulation 2015, 131, 582–590. [Google Scholar] [CrossRef] [PubMed]
- Sylvester, J.T.; Shimoda, L.A.; Aaronson, P.I.; Ward, J.P. Hypoxic pulmonary vasoconstriction. Physiol. Rev. 2012, 92, 367–520. [Google Scholar] [CrossRef]
- Swenson, E.R. Hypoxic pulmonary vasoconstriction. High Alt. Med. Biol. 2013, 14, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, P.; Gibbs, J.S. Effect of altitude on the heart and the lungs. Circulation 2007, 116, 2191–2202. [Google Scholar] [CrossRef]
- West, B.H.; Fleming, R.G.; Al Hemyari, B.; Banankhah, P.; Meyer, K.; Rozier, L.H.; Murphy, L.S.; Coluzzi, A.C.; Rusheen, J.L.; Kumar, P.; et al. Relation of Patent Foramen Ovale to Acute Mountain Sickness. Am. J. Cardiol. 2019, 123, 2022–2025. [Google Scholar] [CrossRef]
- Allemann, Y.; Hutter, D.; Lipp, E.; Sartori, C.; Duplain, H.; Egli, M.; Cook, S.; Scherrer, U.; Seiler, C. Patent foramen ovale and high-altitude pulmonary edema. JAMA 2006, 296, 2954–2958. [Google Scholar] [CrossRef]
- Dine, C.J.; Kreider, M.E. Hypoxia altitude simulation test. Chest 2008, 133, 1002–1005. [Google Scholar] [CrossRef]
- DiMarco, K.G.; Beasley, K.M.; Shah, K.; Speros, J.P.; Elliott, J.E.; Laurie, S.S.; Duke, J.W.; Goodman, R.D.; Futral, J.E.; Hawn, J.A.; et al. No effect of patent foramen ovale on acute mountain sickness and pulmonary pressure in normobaric hypoxia. Exp. Physiol. 2022, 107, 122–132. [Google Scholar] [CrossRef]
- Wu, L.A.; Malouf, J.F.; Dearani, J.A.; Hagler, D.J.; Reeder, G.S.; Petty, G.W.; Khandheria, B.K. Patent foramen ovale in cryptogenic stroke—Current understanding and management options. Arch. Intern. Med. 2004, 164, 950–956. [Google Scholar] [CrossRef] [PubMed]
- Seccombe, L.M.; Chow, V.; Zhao, W.; Lau, E.M.; Rogers, P.G.; Ng, A.C.; Veitch, E.M.; Peters, M.J.; Kritharides, L. Right heart function during simulated altitude in patients with pulmonary arterial hypertension. Open Heart 2017, 4, e000532. [Google Scholar] [CrossRef] [PubMed]
- Pena, E.; Brito, J.; El Alam, S.; Siques, P. Oxidative Stress, Kinase Activity and Inflammatory Implications in Right Ventricular Hypertrophy and Heart Failure under Hypobaric Hypoxia. Int. J. Mol. Sci. 2020, 21, 6421. [Google Scholar] [CrossRef]
- Silverman, H.S.; Wei, S.; Haigney, M.C.; Ocampo, C.J.; Stern, M.D. Myocyte adaptation to chronic hypoxia and development of tolerance to subsequent acute severe hypoxia. Circ. Res. 1997, 80, 699–707. [Google Scholar] [CrossRef]
- Boehme, J.; Le Moan, N.; Kameny, R.J.; Loucks, A.; Johengen, M.J.; Lesneski, A.L.; Gong, W.; Goudy, B.D.; Davis, T.; Tanaka, K.; et al. Preservation of myocardial contractility during acute hypoxia with OMX-CV, a novel oxygen delivery biotherapeutic. PLoS Biol. 2018, 16, e2005924. [Google Scholar] [CrossRef] [PubMed]
- Maufrais, C.; Rupp, T.; Bouzat, P.; Doucende, G.; Verges, S.; Nottin, S.; Walther, G. Heart mechanics at high altitude: 6 days on the top of Europe. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 1369–1377. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.R.; Lichtblau, M.; Furian, M.; Mayer, L.C.; Berlier, C.; Muller, J.; Saxer, S.; Schwarz, E.I.; Bloch, K.E.; Ulrich, S. Cardiorespiratory Adaptation to Short-Term Exposure to Altitude vs. Normobaric Hypoxia in Patients with Pulmonary Hypertension. J. Clin. Med. 2022, 11, 2769. [Google Scholar] [CrossRef]
- Ahmedzai, S.; Balfour-Lynn, I.M.; Bewick, T.; Buchdahl, R.; Coker, R.K.; Cummin, A.R.; Gradwell, D.P.; Howard, L.; Innes, J.A.; Johnson, A.O.; et al. Managing passengers with stable respiratory disease planning air travel: British Thoracic Society recommendations. Thorax 2011, 66 (Suppl. S1), i1–i30. [Google Scholar] [CrossRef]
- Coker, R.K.; Armstrong, A.; Church, A.C.; Holmes, S.; Naylor, J.; Pike, K.; Saunders, P.; Spurling, K.J.; Vaughn, P. BTS Clinical Statement on air travel for passengers with respiratory disease. Thorax 2022, 77, 329–350. [Google Scholar] [CrossRef] [PubMed]
- Edvardsen, A.; Ryg, M.; Akero, A.; Christensen, C.C.; Skjonsberg, O.H. COPD and air travel: Does hypoxia-altitude simulation testing predict in-flight respiratory symptoms? Eur. Respir. J. 2013, 42, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
n = 27 | |
---|---|
Age, years | 64.7 ± 14.4 |
Sex, n (%) | |
Female | 14 (51.9%) |
Male | 13 (48.1%) |
Height, m | 1.72 ± 0.09 |
Weight, Kg | 88.9 ± 19.7 |
BMI, Kg/m2 | 30.2 ± 7.3 |
BSA, m2 | 2.0 ± 0.2 |
TTE baseline parameters | |
LVIVS, mm | 9.6 ± 1.5 |
LVPW, mm | 9.4 ± 1.0 |
LVEDD, mm | 48.1 ± 5.6 |
LVEDV, mL | 89.5 ± 21.9 |
LVESV, mL | 33.9 ± 12.1 |
Ejection Fraction, % | 62.7 ± 4.7 |
E wave | 0.6 ± 0.2 |
A wave | 0.6 ± 0.2 |
E/A ratio | 1.1 ± 0.5 |
E/e’ medial | 9.2 ± 5.3 |
E/e’ lateral | 7.0 ± 4.5 |
Diastolic function (grading) | |
Normal | 16 (59.3%) |
Grade 1 | 11 (40.7%) |
Severe valvular heart diseases | 0 (0.0%) |
RV basal diameter, mm | 35.9 ± 4.6 |
RV mid diameter, mm | 30.8 ± 4.7 |
TAPSE, mm | 20.4 ± 3.9 |
S’ wave, cm/s | 12.7 ± 2.8 |
RV free wall strain, % | −23.8 ± 4.8 |
RVSP, mmHg | 27.7 ± 7.1 |
HSTs Target altitude | |
Target Altitude, ft (mean) | 8766.7 ± 1794.2 |
Target Altitude, n (%) | |
6500 ft | 1 (3.7%) |
7300 ft | 1 (3.7%) |
7500 ft | 1 (3.7%) |
8000 ft | 16 (59.3%) |
8200 ft | 2 (7.4%) |
10,000 ft | 1 (3.7%) |
11,500 ft | 2 (7.4%) |
12,000 ft | 2 (7.4%) |
14,000 ft | 1 (3.7%) |
Parameter | Baseline | Peak Hypoxia | p Value (95% CI) |
---|---|---|---|
SBP, mmHg | 129.2 ± 14.7 | 128.9 ± 14.1 | 0.886 |
DBP, mmHg | 78.8 ± 9.0 | 77.5 ± 8.7 | 0.487 |
HR, bpm | 67.4 ± 11.2 | 69.9 ± 12.5 | 0.148 |
O2, % | 96.1 ± 2.0 | 81.6 ± 9.2 | <0.001 (95% CI 10.9–18.2) |
ETCO2, mmHg | 28.9 ± 6.9 | 25.4 ± 6.1 | 0.003 (95% CI 1.3–5.6) |
RVSP, mmHg | 27.7 ± 7.1 | 36.6 ± 10.6 | <0.001 (95% CI 6.0–11.8) |
TAPSE, mm | 20.4 ± 3.9 | 19.1 ± 4.5 | 0.028 (95% CI 0.2–2.4) |
S’, cm/s | 12.7 ± 2.8 | 11.3 ± 3.0 | <0.001 (95% CI 0.6–2.2) |
RV free wall strain, % | −23.8 ± 4.8 | −21.3 ± 5.4 | <0.001 (95% CI 1.0–3.9) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepanek, J.; Farina, J.M.; Mahmoud, A.K.; Chao, C.-J.; Alsidawi, S.; Ayoub, C.; Barry, T.; Pereyra, M.; Scalia, I.G.; Abbas, M.T.; et al. Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography. J. Imaging 2024, 10, 38. https://doi.org/10.3390/jimaging10020038
Stepanek J, Farina JM, Mahmoud AK, Chao C-J, Alsidawi S, Ayoub C, Barry T, Pereyra M, Scalia IG, Abbas MT, et al. Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography. Journal of Imaging. 2024; 10(2):38. https://doi.org/10.3390/jimaging10020038
Chicago/Turabian StyleStepanek, Jan, Juan M. Farina, Ahmed K. Mahmoud, Chieh-Ju Chao, Said Alsidawi, Chadi Ayoub, Timothy Barry, Milagros Pereyra, Isabel G. Scalia, Mohammed Tiseer Abbas, and et al. 2024. "Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography" Journal of Imaging 10, no. 2: 38. https://doi.org/10.3390/jimaging10020038
APA StyleStepanek, J., Farina, J. M., Mahmoud, A. K., Chao, C.-J., Alsidawi, S., Ayoub, C., Barry, T., Pereyra, M., Scalia, I. G., Abbas, M. T., Wraith, R. E., Brown, L. S., Radavich, M. S., Curtisi, P. J., Hartzendorf, P. C., Lasota, E. M., Umetsu, K. N., Peterson, J. M., Karlson, K. E., ... Arsanjani, R. (2024). Identifying the Causes of Unexplained Dyspnea at High Altitude Using Normobaric Hypoxia with Echocardiography. Journal of Imaging, 10(2), 38. https://doi.org/10.3390/jimaging10020038