As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Association rules are one of the most used data mining techniques. The first proposals have considered relations over time in different ways, resulting in the so-called Temporal Association Rules (TAR). Although there are some proposals to extract association rules in OLAP systems, to the best of our knowledge, there is no method proposed to extract temporal association rules over multidimensional models in these kinds of systems. In this paper we study the adaptation of TAR to multidimensional structures, identifying the dimension that establishes the number of transactions and how to find time relative correlations between the other dimensions. A new method called COGtARE is presented as an extension of a previous approach proposed to reduce the complexity of the resulting set of association rules. The method is tested in application to COVID-19 patients data.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.