As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Medical artificial intelligence (AI) systems need to learn to recognize synonyms or paraphrases describing the same anatomy, disease, treatment, etc. to better understand real-world clinical documents. Existing linguistic resources focus on variants at the word or sentence level. To handle linguistic variations on a broader scale, we proposed the Medical Text Radiology Report section Japanese version (MedTxt-RR-JA), the first clinical comparable corpus. MedTxt-RR-JA was built by recruiting nine radiologists to diagnose the same 15 lung cancer cases in Radiopaedia, an open-access radiological repository. The 135 radiology reports in MedTxt-RR-JA were shown to contain word-, sentence- and document-level variations maintaining similarity of contents. MedTxt-RR-JA is also the first publicly available Japanese radiology report corpus that would help to overcome poor data availability for Japanese medical AI systems. Moreover, our methodology can be applied widely to building clinical corpora without privacy concerns.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.