As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Early detection of deterioration at hospitals could be beneficial in terms of reducing mortality and morbidity rates and costs. In this paper, we present a model based on Long Short-Term Memory (LSTM) neural network used in deep learning to predict the illness severity of patients in advance. Hence, by predicting health severity, this model can be used to identify deteriorating patients. Our proposed model utilizes continuous monitored vital signs, including heart rate, respiratory rate, oxygen saturation, and blood pressure automatically collected from patients during hospitalization. In this study, a short-time prediction using a sliding window approach is applied. The performance of the proposed model was compared with the Multi-Layer Perceptron (MLP) neural network, a feedforward class of neural network, based on R2 score and Root Mean Square Error (RMSE) metrics. The results showed that the LSTM has a better performance and could predict the illness severity of patients more accurately.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.