As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Misspellings in clinical free text present potential challenges to pharmacovigilance tasks, such as monitoring for potential ineffective treatment of drug-resistant infections. We developed a novel method using Word2Vec, Levenshtein edit distance constraints, and a customized lexicon to identify correct and misspelled pharmaceutical word forms. We processed a large corpus of clinical notes in a real-world pharmacovigilance task, achieving positive predictive values of 0.929 and 0.909 in identifying valid misspellings and correct spellings, respectively, and negative predictive values of 0.994 and 0.333 as assessments where the program did not produce output. In a specific Methicillin-Resistant Staphylococcus Aureus use case, the method identified 9,815 additional instances in the corpus for potential inaffective drug administration inspection. The findings suggest that this method could potentially achieve satisfactory results for other pharmacovigilance tasks.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.