As a guest user you are not logged in or recognized by your IP address. You have
access to the Front Matter, Abstracts, Author Index, Subject Index and the full
text of Open Access publications.
Current standards cannot cover the safety requirements of machine learning based functions used in highly automated driving. Because of the opacity of neural networks, some self-driving functions cannot be developed following the V-model. These functions require the expansion of the standards. This paper focuses on this gap and defines functional reliability for such functions to help the future standards control the quality of machine learning based functions. As an example, reliability functions for pedestrian detection are built. Since the quality criteria in computer vision do not consider safety, new approaches for expression and evaluation of this reliability are designed.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.
This website uses cookies
We use cookies to provide you with the best possible experience. They also allow us to analyze user behavior in order to constantly improve the website for you. Info about the privacy policy of IOS Press.