Reduction of the Number of Analyzed Parameters in Network Attack Detection Systems | Automatic Control and Computer Sciences Skip to main content

Advertisement

Log in

Reduction of the Number of Analyzed Parameters in Network Attack Detection Systems

  • Published:
Automatic Control and Computer Sciences Aims and scope Submit manuscript

Abstract—

Methods to reduce the number of network traffic parameters are analyzed. A prototype of the network attack detection system with a module for reducing the number of network traffic parameters is proposed. A technique for reducing network traffic attributes is proposed. The accuracy and time of detecting network attacks by the developed prototype are assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Vasiliev, Y.S., Zegzhda, P.D., and Kuvshinov, V.I., Modern problems of cybersecurity, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2014, vol. 17, no. 3, pp. 210–214.

  2. Anisimov, V.G., Anisimov, E.G., Zegzhda, P.D., and Suprun, A.F., The problem of innovative development of information security systems in the transport sector, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1105–1110.

    Article  Google Scholar 

  3. Pavlenko, E. and Zegzhda, D., Sustainability of cyber-physical systems in the context of targeted destructive influences, IEEE Industrial Cyber-Physical Systems, ICPS, 2018, pp. 830–834.

    Google Scholar 

  4. Zegzhda, D.P., Poltavtseva, M.A., and Lavrova, D.S., Systematization and security assessment of cyber-physical systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 835–843.

    Article  Google Scholar 

  5. Krundyshev, V. and Kalinin, M., Prevention of false data injections in smart infrastructures, IEEE International Black Sea Conference on Communications and Networking, 2019. https://doi.org/10.1109/BlackSeaCom.2019.8812786

  6. Dakhnovich, A.D., Moskvin, D.A., and Zegzhda, D.P., Analysis of the information security threats in the digital production networks, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 1071–1075.

    Article  Google Scholar 

  7. Belenko, V., Krundyshev, V., and Kalinin, M., Synthetic datasets generation for intrusion detection in VANET, ACM International Conference Proceeding Series, 2018. https://doi.org/10.1145/3264437.3264479

  8. Markov, Y.A., Kalinin, M.O., and Zegzhda, D.P., A technique of abnormal behavior detection with genetic sequences alignment algorithms, International Conference on Enterprise Information Systems and Web Technologies 2010, EISWT 2010, 2010, pp. 104–110.

  9. Lavrova, D., Zegzhda, D., and Yarmak, A., Using GRU neural network for cyber-attack detection in automated process control systems, IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom), Sochi, 2019, pp. 1–3.

  10. Lavrova, D., Zaitceva, E., and Zegzhda, P., Bio-inspired approach to self-regulation for industrial dynamic network infrastructure, CEUR Workshop Proc., 2019, vol. 2603, pp. 34–39.

    Google Scholar 

  11. Kalinin, M.O., Zubkov, E.A., Suprun, A.F., and Pechenkin, A.I., Prevention of attacks on dynamic routing in self-organizing adhoc networks using swarm intelligence, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 977–983.

    Article  Google Scholar 

  12. Krundyshev, V., Kalinin, M., and Zegzhda, P., Artificial swarm algorithm for VANET protection against routing attacks, 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, 2018, pp. 795–800.

    Google Scholar 

  13. Kalinin, M., Demidov, R., and Zegzhda, P., Hybrid neural network model for protection of dynamic cyber infrastructure, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 4, pp. 375–382.

  14. Kalinin, M.O., Lavrova, D.S., and Yarmak, A.V., Detection of threats in cyberphysical systems based on deep learning methods using multidimensional time series, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 912–917.

    Article  Google Scholar 

  15. Zegzhda, P., Zegzhda, D., Pavlenko, E., and Ignatev, G., Applying deep learning techniques for Android malware detection, ACM International Conference Proceeding Series, 2018. https://doi.org/10.1145/3264437.3264476

  16. Belenko, V., Chernenko, V., Kalinin, M., and Krundyshev, V., Evaluation of GAN applicability for intrusion detection in self-organizing networks of cyber physical systems, 2018 International Russian Automation Conference, RusAutoCon, 2018. https://doi.org/10.1109/RUSAUTOCON.2018.8501783

  17. Krundyshev, V. and Kalinin, M., Hybrid neural network frame work for detection of cyber attacks at smart infrastructures, ACM International Conference Proceeding Series, 2019. https://doi.org/10.1145/3357613.3357623

  18. Ovasapyan, T.D., Moskvin, D.A., and Kalinin, M.O., Using neural networks to detect internal intruders in vanets, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 954–958.

    Article  Google Scholar 

  19. Zegzhda, D., Lavrova, D., and Poltavtseva, M., Multifractal security analysis of cyberphysical systems, Nonlinear Phenom. Complex Syst. (Dordrecht, Neth.), 2019, vol. 22, no. 2, pp. 196–204.

  20. Zegzhda, P.D. and Kalinin, M.O., Automatic security management of computer systems, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 665–672.

    Article  Google Scholar 

  21. Pavlenko, E.Y., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.

    Article  Google Scholar 

  22. Vert, N.S., Volkova, A.S., Zegzhda, D.P., and Kalinin, M.O., Maintenance of sustainable operation of pipeline-parallel computing systems in the cloud environment, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 713–720.

    Article  Google Scholar 

  23. Zegzhda, D.P. and Pavlenko, E.Y., Cyber-sustainability of software-defined networks based on situational management, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 984–992.

    Article  Google Scholar 

  24. Stepanova, T., Pechenkin, A., and Lavrova, D., Ontology-based big data approach to automated penetration testing of large-scale heterogeneous systems, ACM International Conference Proceeding Series, 2015. https://doi.org/10.1145/2799979.2799995

  25. Lavrova, D.S., An approach to developing the SIEM system for the Internet of Things, Autom. Control Comput. Sci., 2016, vol. 50, no. 8, pp. 673–681.

    Article  Google Scholar 

  26. Lavrova, D., Zegzhda, D., and Yarmak, A., Predicting cyber attacks on industrial systems using the Kalman filter, 3rd World Conference on Smart Trends in Systems, Security and Sustainability, WorldS4 2019, 2019, pp. 317–321.

  27. Lavrova, D., Poltavtseva, M., and Shtyrkina, A., Security analysis of cyber-physical systems network infrastructure, 2018 IEEE Industrial Cyber-Physical Systems (ICPS), 2018, pp. 818–823.

    Google Scholar 

  28. Pavlenko, E.Y., Yarmak, A.V., and Moskvin, D.A., Hierarchical approach to analyzing security breaches in information systems, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 829–834.

    Article  Google Scholar 

  29. Platonov, V.V. and Semenov, P.O., Using data-mining methods to detect network attacks, Autom. Control Comput. Sci., 2015, vol. 49, no. 8, pp. 766–769.

    Article  Google Scholar 

  30. Kohavi, R. and John, G., Wrappers for feature selection, Artif. Intell., 1997, vol. 97, nos. 1–2, pp. 273–324.

    Article  MATH  Google Scholar 

  31. Kamath, A., A Novel Two-Stage Classifier with Feature Selection for Intrusion Detection, Maulana Azad Inst. Technol., Bhopal, 2015.

    Google Scholar 

  32. Guyon, I., et al., Gene selection for cancer classification using support vector machines, Mach. Learn., 2002, vol. 46, nos. 1–3, pp. 389–422.

    Article  MATH  Google Scholar 

  33. Vafaie, H. and De Jong, K., Genetic algorithms as a tool for feature selection in machine learning, Proceedings Fourth International Conference on Tools with Artificial Intelligence TAI'92, 1992, pp. 200–203.

  34. Goscik, J. and Lukaszuk, T., Application of the recursive feature elimination and the relaxed linear separability feature selection algorithms to gene expression data analysis, Adv. Comput. Sci. Res., 2013, vol. 10, pp. 39–52.

    Google Scholar 

  35. Chen, X., et al., Semi-supervised feature selection via rescaled linear regression, IJCAI, 2017, vol. 2017, pp. 1525–1531.

    Google Scholar 

  36. Demidov, R.A., Pechenkin, A.I., Zegzhda, P.D., and Kalinin, M.O., Application model of modern artificial neural network methods for the analysis of information systems security, Autom. Control Comput. Sci., 2018, vol. 52, no. 8, pp. 965–970.

    Article  Google Scholar 

  37. Xu, Z., et al., Gradient boosted feature selection, 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2014, pp. 522–531.

  38. Platonov, V.V. and Semenov, P.O., An adaptive model of a distributed intrusion detection system, Autom. Control Comput. Sci., 2017, vol. 51, no. 8, pp. 894–898.

    Article  Google Scholar 

  39. Krundyshev, V. and Kalinin, M., Prevention of false data injections in smart infrastructures, IEEE International Conference on Industrial Cyber Physical Systems, 2019. https://doi.org/10.1109/BlackSeaCom.2019.8812786

  40. Belenko, V., Chernenko, V., Krundyshev, V., and Kalinin, M., Data-driven failure analysis for the cyber physical infrastructures, IEEE International Conference on Industrial Cyber Physical Systems, 2019. https://doi.org/10.1109/ICPHYS.2019.8854888

  41. Breiman, L., Random forests, Mach. Learn., 2001, vol. 45, no. 1, pp. 5–32.

    Article  MATH  Google Scholar 

  42. Moustafa, N. and Slay, J., The evaluation of network anomaly detection systems: Statistical analysis of the UNSW-NB15 data set and the comparison with the KDD99 data set, Inf. Secur. J.: Glob. Perspect., 2016, vol. 25, nos. 1–3, pp. 18–31.

    Google Scholar 

  43. Nawir, M., et al., Multi-classification of UNSW-NB15 dataset for network anomaly detection system, J. Theor. Appl. Inf. Technol., 2018, vol. 96, no. 15, pp. 5094–5104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. A. Popova or V. V. Platonov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Pismenov

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popova, E.A., Platonov, V.V. Reduction of the Number of Analyzed Parameters in Network Attack Detection Systems. Aut. Control Comp. Sci. 54, 907–914 (2020). https://doi.org/10.3103/S0146411620080295

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0146411620080295

Keywords:

Navigation