Abstract
The calculation of the premium cost of an option exchange is usually computed by the different mathematical models that obtain the degree of uncertainty in the financial market by Black-Scholes method though such a degree is inaccurate. In order to improve the management of uncertainty the use of fuzzy logic makes possible to capture a better reality of the derivatives market in an uncertain environment. Therefore, this paper aims at introducing a Fuzzy Inference System to estimate the Premium Cost of an option exchange (FISPC) by using the Mamdani based inference system to provide managers a supporting tool for the implementation of design of strategies for the management of financial risk with the purpose of minimizing exchange risk. For a better understanding of the proposal and to validate the good performance of FISPC, it will be developed and applied in the Derivative Market in Mexico and its results compared with Black-Sholes theoretical model. Eventually, an analysis of the results and the impact of managing financial risks with FISPC in the event of volatility in the financial markets are provided.
Article PDF
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
P. Jorion, Valor en riesgo: El nuevo paradigma para el control de riesgos con derivados/Value at risk (González Herrera tr. Limusa, México, 2009).
M. Galant and B. Dolan, Currency Trading (Wiley Publishing, Inc., U.S, 2007).
H. Markowitz, Portfolio Selection, Journal of Finance 7(1) (1952) 77–91.
W. Sharpe, Capital Asset Prices: A Theory of Market Equilibrium Under Conditions of Risk. Journal of Finance, 19(3) (1964) 425–442.
F. Black and M. Scholes, The Pricing of Options and Corporate, Journal of Political Economy, 81(3) (1973) 637–654.
E. Scott and A. Tucker, Predicting Currency Return Volatility, Journal of Banking and Finance, 13 (1989) 839–851.
R. Merton, Application of Option-Pricing Theory: Twenty-Five Years Later, The American Economic Review, 88(3) (1998) 323–349.
JP Morgan, Risk Metrics Technical Manual (J.P. Morgan Bank, New York, 1995).
A. De Lara, Medición y control de riesgos finacieros (Limusa, México, 2008).
C. Lee, G. Tzeng and S. Wang, A New Application of Fuzzy Set Theory to the Black-Scholes Option Pricing Model, Expert Systems with Applications (2005) 330–342.
J. Gil-Aluja, Fuzzy Sets in the Management of Uncertainty (Springer, Germany, 2004).
M. Muñoz and E. Avilés, La incorporación de la lógica difusa al modelo Black-Scholes, para la determinación del precio de la opción cambiaria mexicana, RIAF 7(7) (2014) 55–68.
L. Zadeh, Fuzzy Sets, Information and Control 8, (1965) 338–353.
E. Mamdani and S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, International Journal of Man-Machine Studies 7 (1975) 1–13.
T. Mirabal, La auditoria interna y la administración del riesgos, Administración de Riesgos y Seguros Iberoamerica (2004) 1–68.
J. Hull, Options, Futures, & Other Derivatives, 6th ed. (Prentice Hall, New Jersey, 2009).
M. Rico and J. Tinto, Matemática borrosa: algunas aplicaciones en las ciencias económicas, administrativas y contables, Contaduría Universidad de Antioquia 52 (2008) 199–214.
J. Liu, L. Martinez, H. Wang, M.R. Rodriguez and V. Novoshilow, Computing with Words in Risk Assessment, International Journal of Computational Intelligence Systems 3(4) (2010) 396–419.
H-J. Zimmermann, Fuzzy set theory and its applications. (Springer Science Business Media, 2001).
L. Zadeh, The Concept of a Linguistic Variable and its Application to Approximate Reasoning-I, Information Sciences 8 (1975) 199–249.
E. Dadios, Fuzzy Logic - Controls, Concepts, Theories and Applications (InTech , 2012).
G. Milanesi, Higher order stochastic moments and the estimation of implied volatility: Application of Edgeworth expansion over the Black-Scholes’ model. Elsevier: Estudios Gerenciales 30(133) (2014) 336–342.
H. Acosta, R. Campo and E. Pulido, Sistema difuso para la inflación en Colombia, Journal Ensayos sobre política Económica 31 (2013) 73–89.
E. Salazar and F. Venegas, Exchange rate long memory: International evidence, Contaduría y Administración 60 (2015) 615–630.
http://www.banxico.org.mx/portal-mercado-cambiario/index.html
R. Salazar, El peso mexicano: la gestión de cobertura del riesgo cambiario mediante la teoría de los efectos olvidados, Journal of Economics, finance and Administrative Science 17(32) (2012) 53–73.
C. Cai, P. McGuinness and Q. Zhang, The pricing of cross-listed securities: The case of Chinese-And H-Shares, Journal of Baking Finance 35 (2011) 2123–2136.
L. Gómez, Oportunidades de Arbitraje, percepción de los inversionistas y corrección del arbitraje en los ADR mexicanos, XXX Premios de investigación Finanzas: Resúmenes ejecutivos IMEF (2014).
M. Ykhlef and D. Algawiaz, A New Strategic Risk Reduction for Risk Management, International Journal of Computational Intelligence Systems 7(6) (2014) 1054–1063
M. Enciso, A. Acosta and J. Campo, Sistema de inferencia difuso para la inflación en Colombia, Elsevier: Ensayos sobre Política Económica 31 (2013) 73–84.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).
About this article
Cite this article
Muñoz, M., Miranda, E. & Sánchez, P. A Fuzzy System for Estimating Premium Cost of Option Exchange Using Mamdani Inference: Derivatives Market of Mexico. Int J Comput Intell Syst 10, 153–164 (2017). https://doi.org/10.2991/ijcis.2017.10.1.11
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.2991/ijcis.2017.10.1.11