Rinton Press - Publisher in Science and Technology
 

 
   

 

Editorial Board
Guidelines for Authors
QIC Online

Subscribers: to view the full text of a paper, click on the title of the paper. If you have any problem to access the full text, please check with your librarian or contact qic@rintonpress.com   To subscribe to QIC, please click Here.

Quantum Information and Computation     ISSN: 1533-7146      published since 2001
Vol.23 No.11&12 September 2023

Closed-form analytic expressions for shadow estimation with brickwork circuits (pp961-993)
         
Mirko Arienzo, Markus Heinrich, Ingo Roth, and Martin Kliesch
         
doi: https://doi.org/10.26421/QIC23.11-12-5

Abstracts: Properties of quantum systems can be estimated using classical shadows, which implement measurements based on random ensembles of unitaries. Originally derived for global Clifford unitaries and products of single-qubit Clifford gates, practical implementations are limited to the latter scheme for moderate numbers of qubits. Beyond local gates, the accurate implementation of very short random circuits with two-local gates is still experimentally feasible and, therefore, interesting for implementing measurements in near-term applications. In this work, we derive closed-form analytical expressions for shadow estimation using brickwork circuits with two layers of parallel two-local Haar-random (or Clifford) unitaries. Besides the construction of the classical shadow, our results give rise to sample-complexity guarantees for estimating Pauli observables.We then compare the performance of shadow estimation with brickwork circuits to the established approach using local Clifford unitaries and find improved sample complexity in the estimation of observables supported on sufficiently many qubits.
Key Words:
Shadow estimation, random quantum circuits, Pauli estimation