Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation | Fractional Calculus and Applied Analysis Skip to main content
Log in

Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper, some initial-boundary-value problems for the time-fractional diffusion equation are first considered in open bounded n-dimensional domains. In particular, the maximum principle well-known for the PDEs of elliptic and parabolic types is extended for the time-fractional diffusion equation. In its turn, the maximum principle is used to show the uniqueness of solution to the initial-boundary-value problems for the time-fractional diffusion equation. The generalized solution in the sense of Vladimirov is then constructed in form of a Fourier series with respect to the eigenfunctions of a certain Sturm-Liouville eigenvalue problem. For the onedimensional time-fractional diffusion equation

$$(D_t^\alpha u)(t) = \frac{\partial } {{\partial x}}\left( {p(x)\frac{{\partial u}} {{\partial x}}} \right) - q(x)u + F(x,t), x \in (0,l), t \in (0,T)$$

the generalized solution to the initial-boundary-value problem with Dirichlet boundary conditions is shown to be a solution in the classical sense. Properties of this solution are investigated including its smoothness and asymptotics for some special cases of the source function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
¥17,985 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Japan)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.G. Bazhlekova, Duhamel-type representation of the solutions of nonlocal boundary value problems for the fractional diffusion-wave equation. In: “Transform Methods and Special Functions’ Varna 1996” (Proc. 2nd Int. Workshop), Bulgarian Academy of Sciences, Sofia (1998), 32–40.

    Google Scholar 

  2. K. Diethelm, The Analysis of Fractional Differential Equations. An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer-Verlag, Heidelberg (2010).

    MATH  Google Scholar 

  3. J.L.A. Dubbeldam, A. Milchev, V.G. Rostiashvili, and T.A. Vilgis, Polymer translocation through a nanopore: A showcase of anomalous diffusion. Physical Review E 76 (2007), 010801 (R).

    Article  Google Scholar 

  4. R. Herrmann, Fractional Calculus: An Introduction for Physicists. World Scientific, Singapore (2011).

    MATH  Google Scholar 

  5. A. Freed, K. Diethelm, and Yu. Luchko, Fractional-order viscoelasticity (FOV): Constitutive development using the fractional calculus. NASA’s Glenn Research Center, Ohio (2002).

    Google Scholar 

  6. R. Gorenflo, Yu. Luchko and S. Umarov, On the Cauchy and multi-point problems for partial pseudo-differential equations of fractional order. Fract. Calc. Appl. Anal. 3, No 3 (2000), 249–277; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  7. R. Hilfer (Ed.), Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000).

    MATH  Google Scholar 

  8. J. Kemppainen, Existence and uniqueness of the solution for a time-fractional diffusion equation. Fract. Calc. Appl. Anal. 14, No 3 (2011), 411–418; DOI: 10.2478/s13540-011-0025-5, hfill http://www.springerlink.com/content/1311-0454/14/3/

    Article  MathSciNet  Google Scholar 

  9. A.A. Kilbas, H.M. Srivastava, and J.J. Trujillo, Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006).

    MATH  Google Scholar 

  10. R. Klages, G. Radons, and I.M. Sokolov (Eds.), Anomalous Transport: Foundations and Applications, Wiley-VCH, Weinheim (2008).

    Google Scholar 

  11. Yu. Luchko, Initial-boundary-value problems for the generalized multiterm time-fractional diffusion equation. J. Math. Anal. Appl. 374, No 2 (2011), 538–548.

    Article  MathSciNet  MATH  Google Scholar 

  12. Yu. Luchko and A. Punzi, Modeling anomalous heat transport in geothermal reservoirs via fractional diffusion equations. Intern. Journal on Geomathematics 1, No 2 (2011), 257–276.

    Article  MathSciNet  Google Scholar 

  13. Yu. Luchko, Some uniqueness and existence results for the initialboundary-value problems for the generalized time-fractional diffusion equation. Comp. and Math. with Appl. 59, No 5 (2010), 1766–1772.

    Article  MathSciNet  MATH  Google Scholar 

  14. Yu. Luchko, Maximum principle for the generalized time-fractional diffusion equation. J. Math. Anal. Appl. 351, No 1 (2009), 218–223.

    Article  MathSciNet  MATH  Google Scholar 

  15. Yu. Luchko, Boundary value problems for the generalized timefractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, No 4 (2009), 409–422; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  16. Yu. Luchko, Operational method in fractional calculus. Fract. Calc. Appl. Anal. 2,No 4 (1999), 463–489; http://www.math.bas.bg/~fcaa

    MathSciNet  MATH  Google Scholar 

  17. Yu. Luchko and R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives. Acta Mathematica Vietnamica 24 (1999), 207–233.

    MathSciNet  MATH  Google Scholar 

  18. R.L. Magin, Fractional Calculus in Bioengineering: Part1, Part 2 and Part 3. Critical Reviews in Biomedical Engineering 32 (2004), 1–104, 105–193, 195–377.

    Article  Google Scholar 

  19. F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticy. World Scientific, Singapore (2010).

    Book  Google Scholar 

  20. F. Mainardi, Fractional relaxation-oscillation and fractional diffusionwave phenomena. Chaos, Solitons and Fractals 7(1996), 1461–1477.

    Article  MathSciNet  MATH  Google Scholar 

  21. M.M. Meerschaert, E. Nane, and P. Vellaisamy, Fractional Cauchy problems on bounded domains. Ann. Probab. 37, No 3 (2009), 979–1007.

    Article  MathSciNet  MATH  Google Scholar 

  22. R. Metzler and J. Klafter, The restaurant at the end of the random walk: Recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A. Math. Gen. 37 (2004), R161–R208.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Metzler and J. Klafter, Boundary value problems for fractional diffusion equations. Phys. A 278 (2000), 107–125.

    Article  MathSciNet  Google Scholar 

  24. I. Podlubny, Fractional Differential Equations. Academic Press, San Diego (1999).

    MATH  Google Scholar 

  25. A.V. Pskhu, Partial Differential Equations of Fractional Order. Nauka, Moscow (2005) (in Russian).

    MATH  Google Scholar 

  26. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993).

    MATH  Google Scholar 

  27. P. Pucci and J. Serrin, The Maximum Principle. Birkhäuser, Basel (2007).

    MATH  Google Scholar 

  28. V.V. Uchaikin, Method of Fractional Derivatives. Artishok, Ul’janovsk (2008) (in Russian).

    Google Scholar 

  29. V.S. Vladimirov, Equations of Mathematical Physics, Nauka, Moscow (1971) (in Russian).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Luchko.

About this article

Cite this article

Luchko, Y. Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation. fcaa 15, 141–160 (2012). https://doi.org/10.2478/s13540-012-0010-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2478/s13540-012-0010-7

MSC 2010

Key Words and Phrases