GraphiQ: Quantum circuit design for photonic graph states
1Quantum Bridge Technologies Inc., 108 College St., Toronto, ON, Canada
2Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Road, Toronto, ON, Canada
3University of Waterloo, Department of Physics & Astronomy, 200 University Ave., Waterloo, ON, Canada
4Institute for Quantum Computing, 200 University Ave., Waterloo, ON, Canada
5Ki3 Photonics Technologies, 2547 Rue Sicard, Montreal, QC, Canada
6Department of Physics, University of Toronto, 60 St George St., Toronto, ON, Canada
7Perimeter Institute for Theoretical Physics, 31 Caroline St N., Waterloo, ON, Canada
Published: | 2024-08-28, volume 8, page 1453 |
Eprint: | arXiv:2402.09285v2 |
Doi: | https://doi.org/10.22331/q-2024-08-28-1453 |
Citation: | Quantum 8, 1453 (2024). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
$\tt{GraphiQ}$ is a versatile open-source framework for designing photonic graph state generation schemes, with a particular emphasis on photon-emitter hybrid circuits. Built in Python, GraphiQ consists of a suite of design tools, including multiple simulation backends and optimization methods. The library supports scheme optimization in the presence of circuit imperfections, as well as user-defined optimization goals. Our framework thus represents a valuable tool for the development of practical schemes adhering to experimentally-relevant constraints. As graph states are a key resource for measurement-based quantum computing, all-photonic quantum repeaters, and robust quantum metrology, among others, we envision GraphiQ's broad impact for advancing quantum technologies.
► BibTeX data
► References
[1] K. Azuma, K. Tamaki, and H.-K. Lo. All-photonic quantum repeaters. Nature Communications, 6 (1): 6787, 2015. https://doi.org/10.1038/ncomms7787.
https://doi.org/10.1038/ncomms7787
[2] P. Hilaire, E. Barnes, and S. E. Economou. Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits. Quantum, 5: 397, 2021. https://doi.org/10.22331/q-2021-02-15-397. arXiv:2005.07198.
https://doi.org/10.22331/q-2021-02-15-397
arXiv:2005.07198
[3] S. Y. Looi, L. Yu, V. Gheorghiu, and R. B. Griffiths. Quantum-error-correcting codes using qudit graph states. Phys. Rev. A, 78 (4): 042303, 2008. https://doi.org/10.1103/PhysRevA.78.042303.
https://doi.org/10.1103/PhysRevA.78.042303
[4] B. A. Bell, D. A. Herrera-Martí, M. S. Tame, D. Markham, W. J. Wadsworth, and J. G. Rarity. Experimental demonstration of a graph state quantum error-correction code. Nature Communications, 5 (1): 3658, 2014. https://doi.org/10.1038/ncomms4658.
https://doi.org/10.1038/ncomms4658
[5] R. Raussendorf and H. J. Briegel. A One-Way Quantum Computer. Phys. Rev. Lett., 86 (22): 5188–5191, 2001. https://doi.org/10.1103/PhysRevLett.86.5188.
https://doi.org/10.1103/PhysRevLett.86.5188
[6] R. Raussendorf, E. D. Browne, and H. J. Briegel. Measurement-based quantum computation on cluster states. Phys. Rev. A, 68 (2): 022312, 2003. https://doi.org/10.1103/PhysRevA.68.022312.
https://doi.org/10.1103/PhysRevA.68.022312
[7] M. Varnava, D. E. Browne, and T. Rudolph. Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett., 97: 120501, 2006. https://doi.org/10.1103/PhysRevLett.97.120501.
https://doi.org/10.1103/PhysRevLett.97.120501
[8] M. A. Nielsen. Optical quantum computation using cluster states. Phys. Rev. Lett., 93: 040503, 2004. https://doi.org/10.1103/PhysRevLett.93.040503.
https://doi.org/10.1103/PhysRevLett.93.040503
[9] M. Gimeno-Segovia, P. Shadbolt, D. E. Browne, and T. Rudolph. From three-photon greenberger-horne-zeilinger states to ballistic universal quantum computation. Phys. Rev. Lett., 115: 020502, 2015. https://doi.org/10.1103/PhysRevLett.115.020502.
https://doi.org/10.1103/PhysRevLett.115.020502
[10] S. Bartolucci, P. Birchall, H. Bombin, H. Cable, C. Dawson, M. Gimeno-Segovia, E. Johnston, K. Kieling, N. Nickerson, M. Pant, F. Pastawski, T. Rudolph, and C. Sparrow. Fusion-based quantum computation. Nature Communications, 19: 912, 2023. https://doi.org/10.1038/s41467-023-36493-1.
https://doi.org/10.1038/s41467-023-36493-1
[11] N. Shettell and D. Markham. Graph States as a Resource for Quantum Metrology. Phys. Rev. Letters, 124 (11): 110502, 2020. https://doi.org/10.1103/PhysRevLett.124.110502.
https://doi.org/10.1103/PhysRevLett.124.110502
[12] D. E. Browne and T. Rudolph. Resource-Efficient Linear Optical Quantum Computation. Phys. Rev. Lett., 95 (1): 010501, 2005. https://doi.org/10.1103/PhysRevLett.95.010501.
https://doi.org/10.1103/PhysRevLett.95.010501
[13] F. Ewert and P. van Loock. $3/4$-efficient bell measurement with passive linear optics and unentangled ancillae. Phys. Rev. Lett., 113: 140403, 2014. https://doi.org/10.1103/PhysRevLett.113.140403.
https://doi.org/10.1103/PhysRevLett.113.140403
[14] M. Pant, H. Krovi, D. Englund, and S. Guha. Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Phys. Rev. A, 95: 012304, 2017. https://doi.org/10.1103/PhysRevA.95.012304.
https://doi.org/10.1103/PhysRevA.95.012304
[15] A. Russo, E. Barnes, and S. E. Economou. Generation of arbitrary all-photonic graph states from quantum emitters. New Journal of Physics, 21 (5): 055002, 2019. https://doi.org/10.1088/1367-2630/ab193d.
https://doi.org/10.1088/1367-2630/ab193d
[16] N. H. Lindner and T. Rudolph. Proposal for pulsed on-demand sources of photonic cluster state strings. Phys. Rev. Lett., 103 (11): 113602, 2009. https://doi.org/10.1103/PhysRevLett.103.113602.
https://doi.org/10.1103/PhysRevLett.103.113602
[17] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, and D. Gershoni. Deterministic generation of a cluster state of entangled photons. Science, 354 (6311): 434–437, 2016. https://doi.org/10.1126/science.aah4758.
https://doi.org/10.1126/science.aah4758
[18] D. Cogan, Z.-E. Su, O. Kenneth, and D. Gershoni. Deterministic source of indistinguishable photons in a cluster state. Nat. Photon., pages 324–329, 2023. https://doi.org/10.1038/s41566-022-01152-2.
https://doi.org/10.1038/s41566-022-01152-2
[19] P. Thomas, L. Ruscio, O. Morin, and G. Rempe. Efficient generation of entangled multiphoton graph states from a single atom. Nature, 608 (7924): 677–681, 2022. https://doi.org/10.1038/s41586-022-04987-5.
https://doi.org/10.1038/s41586-022-04987-5
[20] S. E. Economou, N. Lindner, and T. Rudolph. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Phys. Rev. Lett., 105: 093601, 2010. https://doi.org/10.1103/PhysRevLett.105.093601.
https://doi.org/10.1103/PhysRevLett.105.093601
[21] D. Buterakos, E. Barnes, and S. E. Economou. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Phys. Rev. X, 7: 041023, 2017. https://doi.org/10.1103/PhysRevX.7.041023.
https://doi.org/10.1103/PhysRevX.7.041023
[22] M. Gimeno-Segovia, T. Rudolph, and S. E. Economou. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Phys. Rev. Lett., 123: 070501, 2019. https://doi.org/10.1103/PhysRevLett.123.070501.
https://doi.org/10.1103/PhysRevLett.123.070501
[23] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G. Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning, C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. D. Matteo, A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S. Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T. Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z. Niu, L. J. O'Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada, C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni, A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber, D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968v4, 2018. https://doi.org/10.48550/arXiv.1811.04968.
https://doi.org/10.48550/arXiv.1811.04968
arXiv:1811.04968v4
[24] J. Gray. quimb: A python package for quantum information and many-body calculations. The Journal of Open Source Software, 3 (29): 819, 2018. https://doi.org/10.21105/joss.00819.
https://doi.org/10.21105/joss.00819
[25] N. Killoran, J. Izaac, N. Quesada, V. Bergholm, M. Amy, and C. Weedbrook. Strawberry fields: A software platform for photonic quantum computing. Quantum, 3: 129, 2019. https://doi.org/10.22331/q-2019-03-11-129.
https://doi.org/10.22331/q-2019-03-11-129
[26] X.-Z. Luo, J.-G. Liu, P. Zhang, and L. Wang. Yao.jl: Extensible, efficient framework for quantum algorithm design. Quantum, 4: 341, 2020. https://doi.org/10.22331/q-2020-10-11-341.
https://doi.org/10.22331/q-2020-10-11-341
[27] A. Javadi-Abhari, M. Treinish, K. Krsulich, C. J. Wood, J. Lishman, J. Gacon, S. Martiel, P. D. Nation, L. S. Bishop, A. W. Cross, B. R. Johnson, and J. M. Gambetta. Quantum computing with Qiskit. arXiv preprint arXiv:2405.08810, 2024. https://doi.org/10.48550/arXiv.2405.08810.
https://doi.org/10.48550/arXiv.2405.08810
arXiv:2405.08810
[28] N. Heurtel, A. Fyrillas, G. de Gliniasty, R. L. Bihan, S. Malherbe, M. Pailhas, E. Bertasi, B. Bourdoncle, P.-E. Emeriau, R. Mezher, L. Music, N. Belabas, B. Valiron, P. Senellart, S. Mansfield, and J. Senellart. Perceval: A Software Platform for Discrete Variable Photonic Quantum Computing. Quantum, 7: 931, 2023. https://doi.org/10.22331/q-2023-02-21-931.
https://doi.org/10.22331/q-2023-02-21-931
[29] B. Li, S. E. Economou, and E. Barnes. Photonic resource state generation from a minimal number of quantum emitters. npj. Quantum Information, 8 (11): 1–7, 2022. https://doi.org/10.1038/s41534-022-00522-6.
https://doi.org/10.1038/s41534-022-00522-6
[30] S.-H. Lee and H. Jeong. Graph-theoretical optimization of fusion-based graph state generation. Quantum, 7: 1212, 2023. https://doi.org/10.22331/q-2023-12-20-1212.
https://doi.org/10.22331/q-2023-12-20-1212
[31] S. Ghanbari, J. Lin, B. MacLellan, L. Robichaud, P. Roztocki, and H.-K. Lo. Optimization of deterministic photonic graph state generation via local operations. arXiv preprint arXiv:2401.00635, 2024. https://doi.org/10.48550/arXiv.2401.00635.
https://doi.org/10.48550/arXiv.2401.00635
arXiv:2401.00635
[32] M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. https://doi.org/10.1017/CBO9780511976667.
https://doi.org/10.1017/CBO9780511976667
[33] D. Gottesman. Stabilizer codes and quantum error correction. arXiv preprint arXiv:quant-ph/9705052, 1997. https://doi.org/10.48550/arXiv.quant-ph/9705052.
https://doi.org/10.48550/arXiv.quant-ph/9705052
arXiv:quant-ph/9705052
[34] S. Aaronson and D. Gottesman. Improved simulation of stabilizer circuits. Phys. Rev. A, 70 (5): 052328, 2004. https://doi.org/10.1103/PhysRevA.70.052328.
https://doi.org/10.1103/PhysRevA.70.052328
[35] K. M. R. Audenaert and M. B. Plenio. Entanglement on mixed stabilizer states: normal forms and reduction procedures. New Journal of Physics, 7 (1): 170, 2005. ISSN 1367-2630. https://doi.org/10.1088/1367-2630/7/1/170.
https://doi.org/10.1088/1367-2630/7/1/170
[36] M. Van den Nest, J. Dehaene, and B. De Moor. Graphical description of the action of local Clifford transformations on graph states. Phys. Rev. A, 69 (2): 022316, 2004a. https://doi.org/10.1103/PhysRevA.69.022316.
https://doi.org/10.1103/PhysRevA.69.022316
[37] A. W. Cross, L. S. Bishop, J. A. Smolin, and J. M. Gambetta. Open Quantum Assembly Language. arXiv preprint arXiv:1707.03429, 2017. https://doi.org/10.48550/arXiv.1707.03429. arXiv:1707.03429.
https://doi.org/10.48550/arXiv.1707.03429
arXiv:1707.03429
[38] H. J. Garcia, I. L. Markov, and A. W. Cross. Efficient inner-product algorithm for stabilizer states. arXiv preprint arXiv:1210.6646, 2012. https://doi.org/10.48550/arXiv.1210.6646.
https://doi.org/10.48550/arXiv.1210.6646
arXiv:1210.6646
[39] M. B. Plenio and S. Virmani. An introduction to entanglement measures. Quantum Inf. Comput., 7 (1): 1–51, 2007. https://doi.org/10.5555/2011706.2011707.
https://doi.org/10.5555/2011706.2011707
[40] A. Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77: 1413–1415, 1996. https://doi.org/10.1103/PhysRevLett.77.1413.
https://doi.org/10.1103/PhysRevLett.77.1413
[41] M. Horodecki, P. Horodecki, and R. Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223 (1): 1–8, 1996. https://doi.org/10.1016/S0375-9601(96)00706-2.
https://doi.org/10.1016/S0375-9601(96)00706-2
[42] M. Van den Nest, J. Dehaene, and B. De Moor. Efficient algorithm to recognize the local Clifford equivalence of graph states. Phys. Rev. A, 70 (3): 034302, 2004b. https://doi.org/10.1103/PhysRevA.70.034302.
https://doi.org/10.1103/PhysRevA.70.034302
Cited by
[1] Sobhan Ghanbari, Jie Lin, Benjamin MacLellan, Luc Robichaud, Piotr Roztocki, and Hoi-Kwong Lo, "Optimization of deterministic photonic-graph-state generation via local operations", Physical Review A 110 5, 052605 (2024).
The above citations are from Crossref's cited-by service (last updated successfully 2025-01-24 03:33:27) and SAO/NASA ADS (last updated successfully 2025-01-24 03:33:28). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.