Photon-photon interactions in Rydberg-atom arrays

Lida Zhang1, Valentin Walther1,2, Klaus Mølmer1, and Thomas Pohl1

1Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
2ITAMP, Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.

► BibTeX data

► References

[1] D. E. Chang, V. Vuletić, and M. D. Lukin, Nature Photonics 8, 685 (2014).
https:/​/​doi.org/​10.1038/​nphoton.2014.192

[2] K. M. Birnbaum, A. Boca, R. Miller, A. D. Boozer, T. E. Northup, and H. J. Kimble, Nature 436, 87 (2005).
https:/​/​doi.org/​10.1038/​nature03804

[3] J. Volz, M. Scheucher, C. Junge, and A. Rauschenbeutel, Nature Photonics 8, 965 (2014).
https:/​/​doi.org/​10.1038/​nphoton.2014.253

[4] A. Reiserer and G. Rempe, Rev. Mod. Phys. 87, 1379 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.1379

[5] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Phys. Rev. X 8, 011018 (2018).
https:/​/​doi.org/​10.1103/​PhysRevX.8.011018

[6] D. O'Shea, C. Junge, J. Volz, and A. Rauschenbeutel, Phys. Rev. Lett. 111, 193601 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.193601

[7] A. Goban, K. S. Choi, D. J. Alton, D. Ding, C. Lacroûte, M. Pototschnig, T. Thiele, N. P. Stern, and H. J. Kimble, Phys. Rev. Lett. 109, 033603 (2012).
https:/​/​doi.org/​10.1103/​PhysRevLett.109.033603

[8] J. D. Thompson, T. G. Tiecke, N. P. de Leon, J. Feist, A. V. Akimov, M. Gullans, A. S. Zibrov, V. Vuletić, and M. D. Lukin, Science 340, 1202 (2013).
https:/​/​doi.org/​10.1126/​science.1237125

[9] T. G. Tiecke, J. D. Thompson, N. P. de Leon, L. R. Liu, V. Vuletić, and M. D. Lukin, Nature 508, 241 (2014).
https:/​/​doi.org/​10.1038/​nature13188

[10] J. Petersen, J. Volz, and A. Rauschenbeutel, Science 346, 67 (2014).
https:/​/​doi.org/​10.1126/​science.1257671

[11] P. Lodahl, S. Mahmoodian, and S. Stobbe, Rev. Mod. Phys. 87, 347 (2015).
https:/​/​doi.org/​10.1103/​RevModPhys.87.347

[12] D. E. Chang, J. S. Douglas, A. González-Tudela, C.-L. Hung, and H. J. Kimble, Rev. Mod. Phys. 90, 031002 (2018).
https:/​/​doi.org/​10.1103/​RevModPhys.90.031002

[13] M. Noaman, M. Langbecker, and P. Windpassinger, Opt. Lett. 43, 3925 (2018).
https:/​/​doi.org/​10.1364/​OL.43.003925

[14] S.-P. Yu, J. A. Muniz, C.-L. Hung, and H. J. Kimble, Proceedings of the National Academy of Sciences 116, 12743 (2019).
https:/​/​doi.org/​10.1073/​pnas.1822110116

[15] A. S. Prasad, J. Hinney, S. Mahmoodian, K. Hammerer, S. Rind, P. Schneeweiss, A. S. Sørensen, J. Volz, and A. Rauschenbeutel, Nature Photonics 14, 719 (2020).
https:/​/​doi.org/​10.1038/​s41566-020-0692-z

[16] J. D. Pritchard, D. Maxwell, A. Gauguet, K. J. Weatherill, M. P. A. Jones, and C. S. Adams, Phys. Rev. Lett. 105, 193603 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.105.193603

[17] T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 488, 57 (2012).
https:/​/​doi.org/​10.1038/​nature11361

[18] J. D. Thompson, T. L. Nicholson, Q.-Y. Liang, S. H. Cantu, A. V. Venkatramani, S. Choi, I. A. Fedorov, D. Viscor, T. Pohl, M. D. Lukin, and V. Vuletić, Nature 542, 206 (2017).
https:/​/​doi.org/​10.1038/​nature20823

[19] A. Paris-Mandoki, C. Braun, J. Kumlin, C. Tresp, I. Mirgorodskiy, F. Christaller, H. P. Büchler, and S. Hofferberth, Phys. Rev. X 7, 041010 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.041010

[20] C. Murray and T. Pohl, Advances In Atomic, Molecular, and Optical Physics, 65, 321 (2016).
https:/​/​doi.org/​10.1016/​bs.aamop.2016.04.005

[21] O. Firstenberg, C. S. Adams, and S. Hofferberth, J. Phys B 49, 152003 (2016).
https:/​/​doi.org/​10.1088/​0953-4075/​49/​15/​152003

[22] S. Baur, D. Tiarks, G. Rempe, and S. Dürr, Phys. Rev. Lett. 112, 073901 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.112.073901

[23] H. Gorniaczyk, C. Tresp, J. Schmidt, H. Fedder, and S. Hofferberth, Phys. Rev. Lett. 113, 053601 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.053601

[24] D. Tiarks, S. Baur, K. Schneider, S. Dürr, and G. Rempe, Phys. Rev. Lett. 113, 053602 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.053602

[25] D. Tiarks, S. Schmidt-Eberle, T. Stolz, G. Rempe, and S. Dürr, Nature Physics 15, 124 (2019).
https:/​/​doi.org/​10.1038/​s41567-018-0313-7

[26] A. V. Gorshkov, R. Nath, and T. Pohl, Phys. Rev. Lett. 110, 153601 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.153601

[27] C. R. Murray, I. Mirgorodskiy, C. Tresp, C. Braun, A. Paris-Mandoki, A. V. Gorshkov, S. Hofferberth, and T. Pohl, Phys. Rev. Lett. 120, 113601 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.120.113601

[28] C. R. Murray, A. V. Gorshkov, and T. Pohl, New Journal of Physics 18, 092001 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​9/​092001

[29] J. Otterbach, M. Moos, D. Muth, and M. Fleischhauer, Phys. Rev. Lett. 111, 113001 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.111.113001

[30] E. Zeuthen, M. J. Gullans, M. F. Maghrebi, and A. V. Gorshkov, Phys. Rev. Lett. 119, 043602 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.043602

[31] P. Bienias, J. Douglas, A. Paris-Mandoki, P. Titum, I. Mirgorodskiy, C. Tresp, E. Zeuthen, M. J. Gullans, M. Manzoni, S. Hofferberth, D. Chang, and A. V. Gorshkov, Phys. Rev. Research 2, 033049 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033049

[32] G. Facchinetti, S. D. Jenkins, and J. Ruostekoski, Phys. Rev. Lett. 117, 243601 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.243601

[33] J. Perczel, J. Borregaard, D. E. Chang, H. Pichler, S. F. Yelin, P. Zoller, and M. D. Lukin, Phys. Rev. Lett. 119, 023603 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.023603

[34] R. J. Bettles, J. c. v. Minář, C. S. Adams, I. Lesanovsky, and B. Olmos, Phys. Rev. A 96, 041603 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.96.041603

[35] P.-O. Guimond, A. Grankin, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. Lett. 122, 093601 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.093601

[36] K. E. Ballantine and J. Ruostekoski, Phys. Rev. Lett. 125, 143604 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.143604

[37] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. Lett. 116, 103602 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.116.103602

[38] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, Phys. Rev. Lett. 118, 113601 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.113601

[39] J. Rui, D. Wei, A. Rubio-Abadal, S. Hollerith, J. Zeiher, D. M. Stamper-Kurn, C. Gross, and I. Bloch, Nature 583, 369 (2020).
https:/​/​doi.org/​10.1038/​s41586-020-2463-x

[40] A. Grankin, P. O. Guimond, D. V. Vasilyev, B. Vermersch, and P. Zoller, Phys. Rev. A 98, 043825 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.043825

[41] R. Bekenstein, I. Pikovski, H. Pichler, E. Shahmoon, S. F. Yelin, and M. D. Lukin, Nature Physics 16, 676 (2020).
https:/​/​doi.org/​10.1038/​s41567-020-0845-5

[42] A. Cidrim, T. S. do Espirito Santo, J. Schachenmayer, R. Kaiser, and R. Bachelard, Phys. Rev. Lett. 125, 073601 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.073601

[43] L. A. Williamson, M. O. Borgh, and J. Ruostekoski, Phys. Rev. Lett. 125, 073602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.125.073602

[44] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, Phys. Rev. Lett. 127, 263602 (2021).
https:/​/​doi.org/​10.1103/​PhysRevLett.127.263602

[45] N. Henkel, R. Nath, and T. Pohl, Phys. Rev. Lett. 104, 195302 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.104.195302

[46] J. Zeiher, P. Schauß, S. Hild, T. Macrì, I. Bloch, and C. Gross, Phys. Rev. X 5, 031015 (2015).
https:/​/​doi.org/​10.1103/​PhysRevX.5.031015

[47] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).
https:/​/​doi.org/​10.1103/​PhysRevLett.85.2208

[48] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch, J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).
https:/​/​doi.org/​10.1103/​PhysRevLett.87.037901

[49] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys. 82, 2313 (2010).
https:/​/​doi.org/​10.1103/​RevModPhys.82.2313

[50] C. S. Adams, J. D. Pritchard, and J. P. Shaffer, Journal of Physics B: Atomic, Molecular and Optical Physics 53, 012002 (2019).
https:/​/​doi.org/​10.1088/​1361-6455/​ab52ef

[51] D. F. V. James, Phys. Rev. A 47, 1336 (1993).
https:/​/​doi.org/​10.1103/​PhysRevA.47.1336

[52] H. T. Dung, L. Knöll, and D.-G. Welsch, Phys. Rev. A 66, 063810 (2002).
https:/​/​doi.org/​10.1103/​PhysRevA.66.063810

[53] A. Asenjo-Garcia, J. D. Hood, D. E. Chang, and H. J. Kimble, Phys. Rev. A 95, 033818 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.033818

[54] H. Zoubi and H. Ritsch, Phys. Rev. A 83, 063831 (2011).
https:/​/​doi.org/​10.1103/​PhysRevA.83.063831

[55] R. T. Sutherland and F. Robicheaux, Phys. Rev. A 94, 013847 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.013847

[56] R. J. Bettles, S. A. Gardiner, and C. S. Adams, Phys. Rev. A 92, 063822 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.92.063822

[57] Y.-X. Zhang and K. Mølmer, Phys. Rev. Lett. 122, 203605 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.122.203605

[58] A. Glicenstein, G. Ferioli, N. Šibalić, L. Brossard, I. Ferrier-Barbut, and A. Browaeys, Phys. Rev. Lett. 124, 253602 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.253602

[59] A. Piñeiro Orioli and A. M. Rey, Phys. Rev. Lett. 123, 223601 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.223601

[60] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
https:/​/​doi.org/​10.1103/​PhysRevLett.84.5094

[61] E. Arimondo, Progress in Optics, 35, 257 (1996).
https:/​/​doi.org/​10.1016/​S0079-6638(08)70531-6

[62] M. Fleischhauer, A. Imamoglu, and J. P. Marangos, Rev. Mod. Phys. 77, 633 (2005).
https:/​/​doi.org/​10.1103/​RevModPhys.77.633

[63] M. T. Manzoni, M. Moreno-Cardoner, A. Asenjo-Garcia, J. V. Porto, A. V. Gorshkov, and D. E. Chang, New Journal of Physics 20, 083048 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aadb74

[64] C. R. Murray, and T. Pohl, Phys. Rev. X 7, 031007 (2017).
https:/​/​doi.org/​10.1103/​PhysRevX.7.031007

[65] K. Mølmer, Y. Castin, and J. Dalibard, J. Opt. Soc. Am. B 10, 524 (1993).
https:/​/​doi.org/​10.1364/​JOSAB.10.000524

[66] N. Stiesdal, H. Busche, K. Kleinbeck, J. Kumlin, M. G. Hansen, H. P. Büchler, and S. Hofferberth, Nature Communications 12, 4328 (2021).
https:/​/​doi.org/​10.1038/​s41467-021-24522-w

[67] A. S. Parkins, P. Marte, P. Zoller, and H. J. Kimble, Phys. Rev. Lett. 71, 3095 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.71.3095

[68] T. C. Ralph, I. Söllner, S. Mahmoodian, A. G. White, and P. Lohdal, Phys. Rev. Lett. 114, 173603 (1993).
https:/​/​doi.org/​10.1103/​PhysRevLett.114.173603

[69] D. Witthaut, M. D. Lukin, and A. S. Sørensen, EPL 97, 50007 (2015).
https:/​/​doi.org/​10.1209/​0295-5075/​97/​50007

[70] E. Shahmoon, D. S. Wild, M. D. Lukin, and S. F. Yelin, ``Theory of cavity qed with 2d atomic arrays,'' (2020), arXiv:2006.01972.
https:/​/​doi.org/​10.48550/​arXiv.2006.01972
arXiv:arXiv:2006.01972

[71] R. Demkowicz-Dobrzański, M. Jarzyna, and J. Kołlodyński, Progress in Optics, 60, 345 (2015).
https:/​/​doi.org/​10.1016/​bs.po.2015.02.003

Cited by

[1] N. Fayard, I. Ferrier-Barbut, A. Browaeys, and J.-J. Greffet, "Optical control of collective states in one-dimensional ordered atomic chains beyond the linear regime", Physical Review A 108 2, 023116 (2023).

[2] Jun Zhang, Li-Hua Zhang, Bang Liu, Zheng-Yuan Zhang, Shi-Yao Shao, Qing Li, Han-Chao Chen, Zong-Kai Liu, Yu Ma, Tian-Yu Han, Qi-Feng Wang, C. Stuart Adams, Bao-Sen Shi, and Dong-Sheng Ding, "Early Warning Signals of the Tipping Point in Strongly Interacting Rydberg Atoms", Physical Review Letters 133 24, 243601 (2024).

[3] Yi Zhang, "Photon amplification and cavity-polariton-like generation in metallic nanoshells localized in optical cavity", Optics Express 31 4, 5640 (2023).

[4] K. E. Ballantine and J. Ruostekoski, "Unidirectional absorption, storage, and emission of single photons in a collectively responding bilayer atomic array", Physical Review Research 4 3, 033200 (2022).

[5] J. Talukdar and D. Blume, "Photon-induced dropletlike bound states in a one-dimensional qubit array", Physical Review A 108 2, 023702 (2023).

[6] Jan Kumlin, Christoph Braun, Christoph Tresp, Nina Stiesdal, Sebastian Hofferberth, and Asaf Paris-Mandoki, "Quantum optics with Rydberg superatoms", Journal of Physics Communications 7 5, 052001 (2023).

[7] Roni Ben-Maimon, Yakov Solomons, and Ephraim Shahmoon, "Dissipative transfer of quantum correlations from light to atomic arrays", Physical Review A 110 3, 033719 (2024).

[8] Maxim Makhonin, Anthonin Delphan, Kok Wee Song, Paul Walker, Tommi Isoniemi, Peter Claronino, Konstantinos Orfanakis, Sai Kiran Rajendran, Hamid Ohadi, Julian Heckötter, Marc Assmann, Manfred Bayer, Alexander Tartakovskii, Maurice Skolnick, Oleksandr Kyriienko, and Dmitry Krizhanovskii, "Nonlinear Rydberg exciton-polaritons in Cu2O microcavities", Light: Science & Applications 13 1, 47 (2024).

[9] Danil Kornovan, Alexander Poddubny, and Alexander Poshakinskiy, "Long persistent anticorrelations in few-qubit arrays", Physical Review A 108 3, 033707 (2023).

[10] Ignacio R. Sola, Seokmin Shin, and Bo Y. Chang, "Two-qubit quantum gates with minimal pulse sequences", Physical Review A 109 5, 052603 (2024).

[11] Yakov Solomons and Ephraim Shahmoon, "Multichannel waveguide QED with atomic arrays in free space", Physical Review A 107 3, 033709 (2023).

[12] Simon Panyella Pedersen, Georg M. Bruun, and Thomas Pohl, "Green's function approach to interacting lattice polaritons and optical nonlinearities in subwavelength arrays of quantum emitters", Physical Review Research 6 4, 043264 (2024).

[13] David Petrosyan, József Fortágh, and Gershon Kurizki, "Coherent interface between optical and microwave photons on an integrated superconducting atom chip", EPJ Quantum Technology 11 1, 18 (2024).

[14] Kyle E. Ballantine and Janne Ruostekoski, "Cooperative optical wavefront engineering with atomic arrays", Nanophotonics 10 7, 1901 (2021).

[15] Alexandra S. Sheremet, Mihail I. Petrov, Ivan V. Iorsh, Alexander V. Poshakinskiy, and Alexander N. Poddubny, "Waveguide quantum electrodynamics: Collective radiance and photon-photon correlations", Reviews of Modern Physics 95 1, 015002 (2023).

[16] C. D. Parmee, K. E. Ballantine, and J. Ruostekoski, "Spontaneous symmetry breaking in frustrated triangular atom arrays due to cooperative light scattering", Physical Review Research 4 4, 043039 (2022).

[17] C. D. Parmee and J. Ruostekoski, "Cooperative optical pattern formation in an ultrathin atomic layer", Optics Express 31 25, 42046 (2023).

[18] Freya Shah, Taylor L. Patti, Oriol Rubies-Bigorda, and Susanne F. Yelin, "Quantum computing with subwavelength atomic arrays", Physical Review A 109 1, 012613 (2024).

[19] Oriol Rubies-Bigorda, Stefan Ostermann, and Susanne F. Yelin, "Characterizing superradiant dynamics in atomic arrays via a cumulant expansion approach", Physical Review Research 5 1, 013091 (2023).

[20] Simon Panyella Pedersen, Lida Zhang, and Thomas Pohl, "Quantum nonlinear metasurfaces from dual arrays of ultracold atoms", Physical Review Research 5 1, L012047 (2023).

[21] Kritsana Srakaew, Pascal Weckesser, Simon Hollerith, David Wei, Daniel Adler, Immanuel Bloch, and Johannes Zeiher, "A subwavelength atomic array switched by a single Rydberg atom", Nature Physics 19 5, 714 (2023).

[22] Cai-Peng Shen, Jia-Qiang Chen, Xue-Feng Pan, Yu-Meng Ren, Xing-Liang Dong, Xin-Lei Hei, Yi-Fan Qiao, and Peng-Bo Li, "Tunable nonreciprocal photon correlations induced by directional quantum squeezing", Physical Review A 108 2, 023716 (2023).

[23] Verena Scheil, Raphael Holzinger, Maria Moreno-Cardoner, and Helmut Ritsch, "Optical Properties of Concentric Nanorings of Quantum Emitters", Nanomaterials 13 5, 851 (2023).

[24] Nico S. Baßler, Michael Reitz, Kai Phillip Schmidt, and Claudiu Genes, "Linear optical elements based on cooperative subwavelength emitter arrays", Optics Express 31 4, 6003 (2023).

[25] Yakov Solomons, Roni Ben-Maimon, and Ephraim Shahmoon, "Universal Approach for Quantum Interfaces with Atomic Arrays", PRX Quantum 5 2, 020329 (2024).

[26] Janne Ruostekoski, "Cooperative quantum-optical planar arrays of atoms", Physical Review A 108 3, 030101 (2023).

[27] M. Moreno-Cardoner, D. Goncalves, and D. E. Chang, "Quantum Nonlinear Optics Based on Two-Dimensional Rydberg Atom Arrays", Physical Review Letters 127 26, 263602 (2021).

[28] Oriol Rubies-Bigorda, Valentin Walther, Taylor L. Patti, and Susanne F. Yelin, "Photon control and coherent interactions via lattice dark states in atomic arrays", Physical Review Research 4 1, 013110 (2022).

[29] K. E. Ballantine and J. Ruostekoski, "Quantum Single-Photon Control, Storage, and Entanglement Generation with Planar Atomic Arrays", PRX Quantum 2 4, 040362 (2021).

[30] Ole A. Iversen and Thomas Pohl, "Self-ordering of individual photons in waveguide QED and Rydberg-atom arrays", Physical Review Research 4 2, 023002 (2022).

[31] Valentin Walther, Lida Zhang, Susanne F. Yelin, and Thomas Pohl, "Nonclassical light from finite-range interactions in a two-dimensional quantum mirror", Physical Review B 105 7, 075307 (2022).

[32] Yakov Solomons and Ephraim Shahmoon, "Multi-channel waveguide QED with atomic arrays in free space", arXiv:2111.11515, (2021).

[33] Li-Ping Yang and Dazhi Xu, "Quantum theory of photonic vortices and quantum statistics of twisted photons", Physical Review A 105 2, 023723 (2022).

[34] Christopher Fechisin, Kunal Sharma, Przemyslaw Bienias, Steven L. Rolston, J. V. Porto, Michael J. Gullans, and Alexey V. Gorshkov, "Quantum Non-Demolition Photon Counting in a 2d Rydberg Atom Array", arXiv:2210.10798, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-12-14 02:48:39) and SAO/NASA ADS (last updated successfully 2024-12-14 02:48:40). The list may be incomplete as not all publishers provide suitable and complete citation data.